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1. Motivation und Problemstellung

Physical Unclonable Functions (PUFs) stellen in der Kryptographie einen spannenden Bereich
zur Generierung und sicheren Speicherung Schliisseln da. Durch minimale, nicht reproduzierbare
Abweichungen im Fertigungsprozess lasst sich die Einzigartigkeit eines Schaltkreises nutzen, um
ein Geheimnis direkt und sicher auf dem Chip zu speichern.

Ein Problem bei der Verwendung der Einzigartigkeiten dieser Schaltkreise ist die verlassliche
Rekonstruktion eines Schliissels. Da diese minimalen Unterschiede nur gemessen werden konnen,
ist das Ergebnis von einem unkontrollierbaren Messfehler behaftet, welcher unter Umstanden den
neuen generierten Schliissel verfalscht.

In der Regel lasst sich dieses Problem durch die Verwendung von Fehlerkorrekturcodes beheben.
Diese werden iiblicherweise nach der Quantisierung — also der Diskretisierung der gemessenen
Werte angewendet.

Aufbauend auf die Bachelorarbeit ,Towards Efficient Helper Data Algorithms for Mulit-Bit PUF
Quantization® soll hier die Praktikabilitidt und Umsetzbarkeit einer neuen Methode zur Verbesserung
der Bitfehlerrate bei einer PUF Quantisierung analysiert werden.



2. Technischer Hintergrund

Das Betreiben einer PUF beinhaltet zwei verschiedene Arbeitsschritte: Enrollment und Recons-
truction.

Als Enrollment wird die erste Messung des Verhaltens des Schaltkreises bezeichnet. Diese kann
direkt in der Fertigungsstatte des Schaltkreises durchgefiithrt werden. Da bis zu diesem Punkt noch
keine andere Messung mit dem Schaltkreis durchgefithrt worden ist, konnen die Ergebnisse aus
diesem Schritt als unveranderlichen Referenzwert fiir das Geheimnis des Schaltkreises angenom-
men werden. Anschliefend wird aus den Messergebnissen mittels eines Quantisierungsprozesses
ein geheimer Schliissel generiert.

Reconstruction bezeichnet jede weitere Messung des Verhaltens des Schaltkreises. Da Messfehler in
diesem Schritt nicht ausgeschlossen werden konnen, ist davon auszugehen, dass das hier gemessene
Geheimnis nicht mit dem Referenz-Geheimnis bzw. dem geheimen Schliissel nach der Enrollment
Phase vollstindig iibereinstimmt. Die Anzahl der Bits, die zwischen diesen beiden Schliisseln
verschieden ist, ist als Bitfehlerrate definiert. Zusitzlich ist davon auszugehen, dass die Messwerte
einer PUF normalverteilt und mittelwertfrei sind.

Die Ausgangslage der Praxis stellt die Bachelorarbeit ,Towards Efficient Helper Data Algorithms
for Multi-Bit PUF Quantization® da. Konkret wurden in der Arbeit zwei verschiedene Methoden
zur Verbesserung der Bitfehlerrate nach der Reconstruction Phase fiir Quantisierungen hoherer
Ordnung analyisert. Die erste Methode beschreibt eine Verallgemeinerung der Two Metric Helper
Data method (TMHD) [1]. Mit Hilfe von TMHD werden zwei verschiedene Quantisiererfunktionen
definiert. Wahrend der Enrollment Phase wird anschlieflend entschieden, welche der beiden
Funktionen ein verlasslicheres Ergebnis bei wiederholten Messergebnissen hervorrufen wird. Die
S-Metric Helper Data method (SMHD) verallgemeinert dieses Konzept auf die Quantisierung mit
mehr als einem Bit [2]. Da mit der Publikation von Fischer [2] bereits eine mogliche Implementation
von SMHD vorgestellt wurde, bildet die in der Arbeit vorgelegte Implementierung eine Basis um
die Performanz der zweiten vorgestellten Methode einordnen zu kénnen.

Im zweiten Teil der Arbeit wurde ein neuer Ansatz zur Verbesserung der Fehlerrate implemen-
tiert und genauer analysiert. Die Grundlage der neuen Methode ergibt sich aus der natiirlichen
Beschaffenheit der Standardnormalverteilung. Da der Erwartungswert einer mittelwertfreien Nor-
malverteilung bei 0 liegt und ein Vorzeichen-basierter 1-bit Quantisierer seine Entscheidungsgrenze
ebenfalls bei 0 definiert, sind die Messwerte welche nahe der 0 liegen aufgrund ihrer inharenten
Messschwankungen dazu anfallig, bei wiederholten Messungen und Quantisierungen unterschied-
liche Ergebnisse zu verursachen.

Dieses Problem wird in Abbildung 1 grafisch verdeutlicht.
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Abbildung 1: 1-bit Quantisierer mit normalverteilten Eingangswerten

Fiir die Umsetzung der neuen Methode werden gewichtete Summen aus mindestens 3 Eingangswer-
ten — wie Ring-Oszillator-Differenzen - gebildet. Die Vorfaktoren der Summanden sind festgelegt
als +1, wobei die jeweiligen Vorzeichen als Helperdaten abgespeichert werden.

f(x,h) = hyzy + hyxy + h3z3 (1)

Gleichung 1 zeigt die Struktur einer Funktion mit drei Eingangswerten und ihrer jeweiligen
Gewichtung durch h, h, und hs. Diese Vorfaktoren sollen nun so gewahlt werden, dass die Werte
der resultierenden Summen einen moéglichst grofien Abstand zu ihrer jeweils nachsten Quantisie-
rergrenze haben.

Eine Losung fiir den 1-bit Fall der in Abbildung 1 dargestellt wird, ist die betragsméflige Maximie-
rung der Werte der gewichteten Summen.
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Abbildung 2: Darstellung der optimierten Eingangswerte

Mathematisch lasst sich dies durch die Maximierung des Betrags der Funktion aus Gleichung 1
herleiten:

h 2

Jmax |f(@;h)l (2)

Gleichung 2 definiert hiermit die Funktion zur Optimierung der Eingangwerte vor dem Quantisierer

fur den 1-bit Fall. Jedoch wird die Definition dieser Funktion fiir eine Vorbereitung der Quantisie-
rung héherer Ordnung um einiges komplexer.
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Abbildung 3: 2-bit Quantisierer Funktion

Anstelle einer Quantisierung basierend auf dem Vorzeichen des Eingangswertes, wie in Abbildung 1
ist bei einer Quantisierung héherer Ordnung eine mehrstufige Entscheidungsfunktion mit mehreren
Grenzen wie in Abbildung 3 notwendig. Es stellt sich nun die Frage, wie man die Grenzen g; und
g, aus Abbildung 3 wahlt, um die Optimierung des 1-bit Falles aus Abbildung 2 auf Félle hoherer
Bit-Ordnung zu tibertragen.

Die ersten Ansitze der Bachelorarbeit beinhalteten zunichst ein naives Raten der moglichen
Grenzen fiir die Quantisierung basierend auf einer Schatzung der Form der resultierenden Vertei-
lung. Zunichst wurde ein globales Optimierungsverfahren untersucht, bei dem nach einer ersten
Optimierung nach der maximalen Distanz zu allen Grenzen, neue Grenzen basierend auf einer em-
pirischen kumulativen Wahrscheinlichkeitsdichtefunktion definiert werden. Dieser Prozess wurde
anschlieflend tiber mehrere Iterationen hinweg durchgefiihrt, um ein stabiles Ergebnis Wahrschein-
lichkeitsverteilungen zu erhalten.

Iteration 1 Iteration 18
Abbildung 4: Wahrscheinlichkeitsverteilungen fiir verschiedene Iterationen

Abbildung 4 zeigt die Ergebnisse dieses iterativen Prozesses zu verschiedenen Zeitpunkten. Wegen
des sehr instabilen Verhaltens der Verteilungen auch iiber mehrere Iterationen hinweg wurde eine
zweite, konvergierende Methode untersucht.



Anstelle die Gewichtungen zu wahlen, dass die resultierende Summe moglichst weit weg von allen
Grenzen liegt, sollen die Summen moglichst genau die Mitten zwischen den Grenzen treffen und so
implizit moglichst weit weg von den Grenzen liegen. Diese Methode hatte zwar den Vorteil, dass die
hervorgehenden Verteilungen zu einer festen Verteilung konvergieren, jedoch zeigte eine spitere
Analyse keine signifikante Verbesserung der Bitfehlerrate auf.

Ziel der Ingenieurspraxis ist nun, eine mogliche Losung fiir das Problem der Konvergenz dieses
Ansatzes zu finden und mit anderen Methoden zur Verbesserung der Bitfehlerrate zu vergleichen.



3. Konzeption und Durchfuhrung

3.1. Literaturrecherche und Konzeption

Zunichst fand eine tiefere Einarbeitung in die existierende Literatur zu alternierenden Optimie-
rungsverfahren statt. Aufgrund der Nahe der Themen hat sich eine Recherche zu den ,k-Means
Clustering” und ,Expectation-maximization (EM)“ Algorithmen angeboten. Spannende Literatur zu
diesen Themen wurde von Bezdek [3] — allgemein zu alternierenden Optimierungsverfahren und
spezifischer von Do [4] publiziert.

Vergleiche der Algorithmen mit dem gestellten Problem

Sowohl die hier vorgestellten Methoden, als auch die ,k-Means Clustering” und EM Algorithmen
16sen ein Optimierungsproblem mittels eines iterativen Verfahrens. Der EM-Algorithmus befasst
sich mit der Schatzung von Parametern in statistischen Modellen, insbesondere wenn der vorge-
gebene Datensatz unvollstindig ist. Wahrenddessen zielt der ,k-Means® Algorithmus darauf ab,
Daten in Cluster zu gruppieren. Besonderes bei letzterem dhnelt die Clusterbildung sehr dem hier
gestellten Problem. Ein entscheidender Unterschied ist, dass bei k-Means Datenpunkte nur einer
vorgegebenen Anzahl an Clustern zugewiesen werden. Eine Beschrankung, welche Datenpunkte
in welches Cluster fallen, wird durch den Algorithmus nicht implementiert, ware aber fiir eine
Verbesserung der Eingangswerte vor der Quantisierung notwendig, da sonst die Gleichverteilung
der quantisierten Symbole nicht garantiert werden kann.

Wenngleich diese Publikationen keinen direkten Weg zur Losung der Problemstellung der Praxis
bieten konnten, stellten sie ein gutes Grundverstindnis fiir diese Art von Problem dar.

3.1.1. Festlegung der verwendeten Toolings

Aufgrund ihrer hohen Effizienz und der umfangreichen Unterstiitzung fiir funktionale Program-
mierung wurde fiir das Projekt, das die Implementierung der Algorithmen und die Simulation der
Bitfehlerrate umfasst, die Programmiersprache Julia ausgewahlt. Im weiteren Verlauf der Praxis
wurde zuséatzlich fiir die verbesserte Moglichkeit der Visualisierung der Ergebnisse das Pluto
Framework - ein Julia-Pendant zu Jupyter Notebooks — mit einbezogen.

3.2. Durchfiihrung und Projektdokumentation

Fiir eine effiziente und tibersichtliche Implementierung der Algorithmen und Simulationen wurden
zunichst diverse Hilfsfunktionen in Julia implementiert.



1 function create linearcombinations(inputs, weights, n)
2 collect(map(

3 set -> begin

4 LinearCombinationSet (

5 collect(map(

6 weights -> begin

LinearCombination(weights, map(v -> [signbit(v)],

/ weights), set, sum(weights .* set))
end,
weights

10 )))

11 end,

12 Iterators.partition(inputs, n)))

13 end

Listing 1: Generierung von allen méglichen Linearkombinationen

Listing 1 zeigt exemplarisch die Implementierung einer Funktion zur Generierung aller méglichen
Linearkombinationen fiir eine Menge an Eingangswerten.

Anschlieflend wurde die betragsmafiige Optimierung, welche in Abbildung 1 und Abbildung 2
dargestellt wird, implementiert und getestet.

3.2.1. Rekursiver Ansatz

Als niachste Moglichkeit fiir den Multi-Bit Fall, ist ein rekursiver Ansatz des Problems implemen-
tiert worden. Hierfiir werden die Eingangswerte zunéchst mit der betragsmafligen Optimierung
verarbeitet um so eine ,optimale® Verteilung fiir den 1-bit Fall zu konstruieren. Anschlieflend
wird die Verteilung in zwei symmetrische Unterverteilungen aufgeteilt, und jeweils deren Mittel-
wert bestimmt. Darauthin werden fiir jede Summe der jeweiligen Unterverteilungen zusatzliche
fraktionierte Gewichtungen auf die bereits bestehenden Gewichtungen aufaddiert. Aufbauend auf
die Mittelwertbestimmung werden zusatzliche Grenzen definiert, anhand deren die aufkommenden
neuen Summen mit fraktionierten Gewichtungen optimal gew#hlt werden. Basierend auf der
Anzahl m an Bits die aus einer Summe extrahiert werden sollen, wird dieses Verfahren m-Mal mit
allen entstehenden Unterverteilungen durchgefiihrt.

10
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Abbildung 5: Darstellung des rekursiven Algorithmus

Abbildung 5 zeigt das grundsatzliche Schema fiir den Rekursiven Algorithmus auf. Zu Beginn
werden die anfanglichen Eingangswerte nach der Methode zur Betragsoptimierung verarbeitet.
Anschlieflend wird die Verteilung in zwei symmetrische Unterverteilungen aufgeteilt. Fur jede
neue Unterverteilung jeweils eine neue Quantisierergrenze iiber den Median dieser Unterverteilung
definiert. n1 beschreibt das Skalar, welches in allen méglichen Kombinationen auf die Helperdaten
der Linearkombinationen von u1l addiert bzw. subtrahiert wird. Aus den neu gefundenen méglichen
Linearkombinationen wird nun diejenige gewahlt, welche moglichst weit weg von den neu definier-
ten Grenzen liegt. Dieses Verfahren wird nun iterativ auf jeder weitere Unterverteilung angewendet
bis die Anzahl der Verteilungen log,(m) entspricht, wobei m die Anzahl der zu quantisierenden
Bits definiert.

Ein erstes positives Ergebnis hier war die schnelle Konvergenz der Verteilung und die Gleichver-
teilung der quantisierten Symbole, da in jeden Grenzbereich méglichst gleich viele Summen gelegt
worden sind. Abbildung 6 zeigt das Ergebnis des rekursiven Ansatzes fiir die Quantisierung von
2 Bit.

Final result of recursive method
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Abbildung 6: Verteilung der Eingangswerte nach dem rekursiven Ansatz
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Jedoch stellte sich nach der Analyse der verwendeten Helperdatenvektoren heraus, dass durch die
Zuweisung der Helperdaten Informationen iiber den Schliissel ableitbar sind.

Helper Data occurrences by quantized bits
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Abbildung 7: Verteilung der Helperdatenvektoren fiir jedes Bitsymbol

Das Histogramm in Abbildung 7 zeigt dieses Problem auf. Damit iiber die Helperdaten keine
Informationen iiber den Schliissel bekannt werden, muss jeder verwendete Helperdatenvektor von
jedem Symbol gleich haufig verwendet werden. Mit diesem Ansatz werden von je zwei Symbolen
jedoch nur vier von acht méglichen Helperdatenvektoren verwendet.

3.2.2. Vorgabe des Codeworts

Eine weitere getestete Methode bestand aus dem vorgeben des zu verwendeten Codewords bzw.
Schliissels. Hierfiir werden die Grenzen der Quantisiererfunktion iiber die kumulative Verteilungs-
funktion der Eingangswerte bestimmt. Anschlielend wird jene Summe mit Helperdaten gewahlt,
welche die Summe zu ihrem vorgegebenen Codewort quantisieren.

12



Final result of input value optimizaition
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Abbildung 8: Verteilung nach der Verarbeitung mit vorgegebenem Codewort

Leider stellte sich die Vorgabe, jene Linearkombination zu wahlen welche am besten ein vorgege-
benes Codewort approximiert nicht als praktikabel heraus, da — wie in Abbildung 8 zu sehen ist — bei
einer Verarbeitung fiir 2 Bit keine vier voneinander unterscheidbaren Unterverteilungen ergeben.
Nahe der 0 lasst sich lediglich eine kleine Abweichung vom 1-bit Fall feststellen, welche aber nicht
signifikant genug ist, um die Bitfehlerrate zu minimieren.

3.2.3. Brute-Force-Ansatz

Als letzten moglichen Losungsansatz wurde ein Brute-Force-Ansatz untersucht. Um die optima-
len Grenzen fiir eine Quantisierung héherer Ordnung zu erhalten, wurden fiir verschiedene
Quantisierergrenzen die Verteilungen der Quantisierten Codewdrter analysiert. Im Detail wurde
fir eine grofle Menge an moglichen Grenzen die Distanzmaximierung der Linearkombinationen
durchgefiihrt. Direkt im Anschluss wurde tiber Pearson’s Chi-square Test die Gleichverteilung der
Quantisierten Symbole iiberpriift und nach einem Maximum des Ergebnisses des Tests gesucht.
Abbildung 9 zeigt das Ergebnis der Verarbeitung dieser Grenzen fiir einen 3-bit Fall.

Da diese Brute-Force Operation sehr rechenaufwendig ist, wurden die bereits in Julia implemen-
tierten Losungen fiir parallel Computing eingesetzt und die Berechnung der idealen Grenzen auf
einem Computer mit hoher Rechenkapazitat ausgelagert.

Damit das parallele Rechnen eine signifikante Verbesserung in der Rechengeschwindigkeit erzielt,

gab es einige Punkte zu beachten:

« Fiir einen festgelegten Datensatz dndern sich die moglichen gewichteten Summen nicht wahrend
der Ausfithrung des Algorithmus’, also konnen diese vorab berechnet und gespeichert werden.

« Das Verwenden der ,pmap” Funktion zur parallelen Ausfithrung des Optimierungsalgorithmus
hat den Rechenprozess um ca. 700ms verlangsamt.
Eine effizientere Losung besteht darin, bei der Ausfithrung des Julia Skripts die Anzahl an Threads
vorzudefinieren und die jeweiligen Funktionen mit dem ,,@everywhere” Flag zu markieren, damit
sie von den verschiedenen Threads aufgerufen werden kénnen.

13



Brute-Force results
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Abbildung 9: Resultat nach Verwendung der durch den Brute-Force Ansatz gefundenen Grenzen

Auch die Betrachtung des Histogramms der Verteilung der Helperdaten zeigt befriedigende Ergeb-
nisse auf. Wie in Abbildung 10 zu sehen ist, wird jeder Helperdatenvektor von jedem Symbol gleich
haufig verwendet.
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Abbildung 10: Resultat nach Verwendung der durch den Brute-Force Ansatz gefundenen Grenzen

Auflerdem ist iiber diese Methode eine signifikante Verbesserung de Bitfehlerrate im Bezug auf eine
Quantisierung ohne Vorverarbeitung und Fehlerkorrekturcode vorzuweisen, weshalb sich hier gute
Chancen auf ein zukiinftiges Nutzbares Verfahren abbilden.
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3.2.4. Portieren der BCH-Code Python Bibliothek

Fir die weitere Integration und vollstindige Implementierung zu einem allgemeinen Simulations-
programm, das die gesamte Fehlerkorrektur bis zum Schliissel abdeckt, ist ein BCH-Fehlerkorrektur-
Code als Python-Codebasis vorgegeben worden. Damit dieser auf die bereits in Julia programmier-
ten Implementierungen angewendet werden kann, wurde diese Codebasis vollstindig von Python
nach Julia portiert. Hierzu waren kleinere Zwischenrecherchen im Bezug auf die Differenzen und
Ahnlichkeiten der beiden Sprachen notwendig, um eine ordnungsgemaifle Portierung durchfithren

zu konnen.

Aufgrund des kurz darauf folgenden Endes der Anstellung im Rahmen der Ingenieurspraxis war es
leider nicht mehr méglich den portierten BCH-Code im Zusammenhang mit der gefundenen Losung

zur Optimierung der Grenzen einzusetzen.

15



4. Ergebnisse & Zusammenfassung

Insgesamt sind die meisten geplanten Ziele zum Erfolg der Ingenieurspraxis erreicht worden. Da
mit einer der getesteten Methoden zur Optimierung der Grenzen eine reproduzierbare Losung
gefunden wurde, stellen sich auch spannende zukiinftige Projekte in diesem Gebiet auf. Insgesamt
konnte der Brute-Force Ansatz noch weiter optimiert werden, etwa mit einer iterativen Erhohung
der Genauigkeit der Grenzen um so auch bei sehr hohen Symbolbreiten genaue Grenzen bestimmen
zu konnen. Da die optimalen Grenzen fiir den 2- und 4-bit Fall mit einer mittelwertfreien Standard-
normalverteilung bestimmt worden sind, lassen sich die hier bereits gefundenen Grenzen leicht
auf weitere Normalverteilungen mit anderen Parametern tibertragen. Auflerdem besteht die Mog-
lichkeit des Zusammenstellens einer Datenbank mit den numerisch optimalen Grenzen fiir dieses
Problem fiir verschiedene Symbolbreiten. Obwohl letztendlich keine vollstindige Integration des
portierten BCH-Codes stattgefunden hat, bietet die nun portierte Bibliothek eine solide Grundlage
fir zukiinftige Integration auch in anderen Projekten.
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Abkurzungsverzeichnis

PUF - physical unclonable function 4, 5, 5
SMHD - S-Metric Helper Data method 5, 5
TMHD - Two Metric Helper Data method 5, 5
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