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1. Motivation und Problemstellung
Physical Unclonable Functions (PUFs) stellen in der Kryptographie einen spannenden Bereich
zur Generierung und sicheren Speicherung Schlüsseln da. Durch minimale, nicht reproduzierbare
Abweichungen im Fertigungsprozess lässt sich die Einzigartigkeit eines Schaltkreises nutzen, um
ein Geheimnis direkt und sicher auf dem Chip zu speichern.

Ein Problem bei der Verwendung der Einzigartigkeiten dieser Schaltkreise ist die verlässliche
Rekonstruktion eines Schlüssels. Da diese minimalen Unterschiede nur gemessen werden können,
ist das Ergebnis von einem unkontrollierbaren Messfehler behaftet, welcher unter Umständen den
neuen generierten Schlüssel verfälscht.

In der Regel lässt sich dieses Problem durch die Verwendung von Fehlerkorrekturcodes beheben.
Diese werden üblicherweise nach der Quantisierung — also der Diskretisierung der gemessenen
Werte angewendet.

Aufbauend auf die Bachelorarbeit „Towards Efficient Helper Data Algorithms for Mulit-Bit PUF
Quantization“ soll hier die Praktikabilität und Umsetzbarkeit einer neuen Methode zur Verbesserung
der Bitfehlerrate bei einer PUF Quantisierung analysiert werden.
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2. Technischer Hintergrund
Das Betreiben einer PUF beinhaltet zwei verschiedene Arbeitsschritte: Enrollment und Recons�
truction.
Als Enrollment wird die erste Messung des Verhaltens des Schaltkreises bezeichnet. Diese kann
direkt in der Fertigungsstätte des Schaltkreises durchgeführt werden. Da bis zu diesem Punkt noch
keine andere Messung mit dem Schaltkreis durchgeführt worden ist, können die Ergebnisse aus
diesem Schritt als unveränderlichen Referenzwert für das Geheimnis des Schaltkreises angenom-
men werden. Anschließend wird aus den Messergebnissen mittels eines Quantisierungsprozesses
ein geheimer Schlüssel generiert.
Reconstruction bezeichnet jede weitere Messung des Verhaltens des Schaltkreises. Da Messfehler in
diesem Schritt nicht ausgeschlossen werden können, ist davon auszugehen, dass das hier gemessene
Geheimnis nicht mit dem Referenz-Geheimnis bzw. dem geheimen Schlüssel nach der Enrollment
Phase vollständig übereinstimmt. Die Anzahl der Bits, die zwischen diesen beiden Schlüsseln
verschieden ist, ist als Bitfehlerrate definiert. Zusätzlich ist davon auszugehen, dass die Messwerte
einer PUF normalverteilt und mittelwertfrei sind.

Die Ausgangslage der Praxis stellt die Bachelorarbeit „Towards Efficient Helper Data Algorithms
for Multi-Bit PUF Quantization“ da. Konkret wurden in der Arbeit zwei verschiedene Methoden
zur Verbesserung der Bitfehlerrate nach der Reconstruction Phase für Quantisierungen höherer
Ordnung analyisert. Die erste Methode beschreibt eine Verallgemeinerung der Two Metric Helper
Data method (TMHD) [1]. Mit Hilfe von TMHD werden zwei verschiedene Quantisiererfunktionen
definiert. Während der Enrollment Phase wird anschließend entschieden, welche der beiden
Funktionen ein verlässlicheres Ergebnis bei wiederholten Messergebnissen hervorrufen wird. Die
S-Metric Helper Data method (SMHD) verallgemeinert dieses Konzept auf die Quantisierung mit
mehr als einem Bit [2]. Da mit der Publikation von Fischer [2] bereits eine mögliche Implementation
von SMHD vorgestellt wurde, bildet die in der Arbeit vorgelegte Implementierung eine Basis um
die Performanz der zweiten vorgestellten Methode einordnen zu können.

Im zweiten Teil der Arbeit wurde ein neuer Ansatz zur Verbesserung der Fehlerrate implemen-
tiert und genauer analysiert. Die Grundlage der neuen Methode ergibt sich aus der natürlichen
Beschaffenheit der Standardnormalverteilung. Da der Erwartungswert einer mittelwertfreien Nor-
malverteilung bei 0 liegt und ein Vorzeichen-basierter 1-bit Quantisierer seine Entscheidungsgrenze
ebenfalls bei 0 definiert, sind die Messwerte welche nahe der 0 liegen aufgrund ihrer inhärenten
Messschwankungen dazu anfällig, bei wiederholten Messungen und Quantisierungen unterschied-
liche Ergebnisse zu verursachen.

Dieses Problem wird in Abbildung 1 grafisch verdeutlicht.
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Abbildung 1: 1-bit Quantisierer mit normalverteilten Eingangswerten

Für die Umsetzung der neuen Methode werden gewichtete Summen aus mindestens 3 Eingangswer-
ten – wie Ring-Oszillator-Differenzen – gebildet. Die Vorfaktoren der Summanden sind festgelegt
als ±1, wobei die jeweiligen Vorzeichen als Helperdaten abgespeichert werden.

𝑓(𝒙, 𝒉) = ℎ1𝑥1 + ℎ2𝑥2 + ℎ3𝑥3 (1)

Gleichung  1 zeigt die Struktur einer Funktion mit drei Eingangswerten und ihrer jeweiligen
Gewichtung durch ℎ1, ℎ2 und ℎ3. Diese Vorfaktoren sollen nun so gewählt werden, dass die Werte
der resultierenden Summen einen möglichst großen Abstand zu ihrer jeweils nächsten Quantisie-
rergrenze haben.

Eine Lösung für den 1-bit Fall der in Abbildung 1 dargestellt wird, ist die betragsmäßige Maximie-
rung der Werte der gewichteten Summen.

0 𝑧0

1
𝒬(1, 𝑧), |𝑓Z(𝑧)|

Optimierte PDF Quantisierer

Abbildung 2: Darstellung der optimierten Eingangswerte

Mathematisch lässt sich dies durch die Maximierung des Betrags der Funktion aus Gleichung 1
herleiten:

max
ℎ1,ℎ2,ℎ3

|𝑓(𝒙, 𝒉)| (2)

Gleichung 2 definiert hiermit die Funktion zur Optimierung der Eingangwerte vor dem Quantisierer
für den 1-bit Fall. Jedoch wird die Definition dieser Funktion für eine Vorbereitung der Quantisie-
rung höherer Ordnung um einiges komplexer.
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Abbildung 3: 2-bit Quantisierer Funktion

Anstelle einer Quantisierung basierend auf dem Vorzeichen des Eingangswertes, wie in Abbildung 1
ist bei einer Quantisierung höherer Ordnung eine mehrstufige Entscheidungsfunktion mit mehreren
Grenzen wie in Abbildung 3 notwendig. Es stellt sich nun die Frage, wie man die Grenzen 𝑔1 und
𝑔2 aus Abbildung 3 wählt, um die Optimierung des 1-bit Falles aus Abbildung 2 auf Fälle höherer
Bit-Ordnung zu übertragen.

Die ersten Ansätze der Bachelorarbeit beinhalteten zunächst ein naives Raten der möglichen
Grenzen für die Quantisierung basierend auf einer Schätzung der Form der resultierenden Vertei-
lung. Zunächst wurde ein globales Optimierungsverfahren untersucht, bei dem nach einer ersten
Optimierung nach der maximalen Distanz zu allen Grenzen, neue Grenzen basierend auf einer em-
pirischen kumulativen Wahrscheinlichkeitsdichtefunktion definiert werden. Dieser Prozess wurde
anschließend über mehrere Iterationen hinweg durchgeführt, um ein stabiles Ergebnis Wahrschein-
lichkeitsverteilungen zu erhalten.

Iteration 1 Iteration 18
Abbildung 4: Wahrscheinlichkeitsverteilungen für verschiedene Iterationen

Abbildung 4 zeigt die Ergebnisse dieses iterativen Prozesses zu verschiedenen Zeitpunkten. Wegen
des sehr instabilen Verhaltens der Verteilungen auch über mehrere Iterationen hinweg wurde eine
zweite, konvergierende Methode untersucht.
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Anstelle die Gewichtungen zu wählen, dass die resultierende Summe möglichst weit weg von allen
Grenzen liegt, sollen die Summen möglichst genau die Mitten zwischen den Grenzen treffen und so
implizit möglichst weit weg von den Grenzen liegen. Diese Methode hatte zwar den Vorteil, dass die
hervorgehenden Verteilungen zu einer festen Verteilung konvergieren, jedoch zeigte eine spätere
Analyse keine signifikante Verbesserung der Bitfehlerrate auf.

Ziel der Ingenieurspraxis ist nun, eine mögliche Lösung für das Problem der Konvergenz dieses
Ansatzes zu finden und mit anderen Methoden zur Verbesserung der Bitfehlerrate zu vergleichen.
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3. Konzeption und Durchführung

3.1. Literaturrecherche und Konzeption
Zunächst fand eine tiefere Einarbeitung in die existierende Literatur zu alternierenden Optimie-
rungsverfahren statt. Aufgrund der Nähe der Themen hat sich eine Recherche zu den „k-Means
Clustering“ und „Expectation-maximization (EM)“ Algorithmen angeboten. Spannende Literatur zu
diesen Themen wurde von Bezdek [3] – allgemein zu alternierenden Optimierungsverfahren und
spezifischer von Do [4] publiziert.

Vergleiche der Algorithmen mit dem gestellten Problem

Sowohl die hier vorgestellten Methoden, als auch die „k-Means Clustering“ und EM Algorithmen
lösen ein Optimierungsproblem mittels eines iterativen Verfahrens. Der EM-Algorithmus befasst
sich mit der Schätzung von Parametern in statistischen Modellen, insbesondere wenn der vorge-
gebene Datensatz unvollständig ist. Währenddessen zielt der „k-Means“ Algorithmus darauf ab,
Daten in Cluster zu gruppieren. Besonderes bei letzterem ähnelt die Clusterbildung sehr dem hier
gestellten Problem. Ein entscheidender Unterschied ist, dass bei k-Means Datenpunkte nur einer
vorgegebenen Anzahl an Clustern zugewiesen werden. Eine Beschränkung, welche Datenpunkte
in welches Cluster fallen, wird durch den Algorithmus nicht implementiert, wäre aber für eine
Verbesserung der Eingangswerte vor der Quantisierung notwendig, da sonst die Gleichverteilung
der quantisierten Symbole nicht garantiert werden kann.

Wenngleich diese Publikationen keinen direkten Weg zur Lösung der Problemstellung der Praxis
bieten konnten, stellten sie ein gutes Grundverständnis für diese Art von Problem dar.

3.1.1. Festlegung der verwendeten Toolings
Aufgrund ihrer hohen Effizienz und der umfangreichen Unterstützung für funktionale Program-
mierung wurde für das Projekt, das die Implementierung der Algorithmen und die Simulation der
Bitfehlerrate umfasst, die Programmiersprache Julia ausgewählt. Im weiteren Verlauf der Praxis
wurde zusätzlich für die verbesserte Möglichkeit der Visualisierung der Ergebnisse das Pluto
Framework – ein Julia-Pendant zu Jupyter Notebooks – mit einbezogen.

3.2. Durchführung und Projektdokumentation
Für eine effiziente und übersichtliche Implementierung der Algorithmen und Simulationen wurden
zunächst diverse Hilfsfunktionen in Julia implementiert.
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1 function create_linearcombinations(inputs, weights, n) Julia
2     collect(map(
3         set -> begin
4             LinearCombinationSet(
5                 collect(map(
6                     weights -> begin

7
                            LinearCombination(weights, map(v -> [signbit(v)],

weights), set, sum(weights .* set))
8                     end,
9                     weights
10                 )))
11         end, 
12         Iterators.partition(inputs, n)))
13 end

Listing 1: Generierung von allen möglichen Linearkombinationen

Listing 1 zeigt exemplarisch die Implementierung einer Funktion zur Generierung aller möglichen
Linearkombinationen für eine Menge an Eingangswerten.

Anschließend wurde die betragsmäßige Optimierung, welche in Abbildung  1 und Abbildung  2
dargestellt wird, implementiert und getestet.

3.2.1. Rekursiver Ansatz
Als nächste Möglichkeit für den Multi-Bit Fall, ist ein rekursiver Ansatz des Problems implemen-
tiert worden. Hierfür werden die Eingangswerte zunächst mit der betragsmäßigen Optimierung
verarbeitet um so eine „optimale“ Verteilung für den 1-bit Fall zu konstruieren. Anschließend
wird die Verteilung in zwei symmetrische Unterverteilungen aufgeteilt, und jeweils deren Mittel-
wert bestimmt. Daraufhin werden für jede Summe der jeweiligen Unterverteilungen zusätzliche
fraktionierte Gewichtungen auf die bereits bestehenden Gewichtungen aufaddiert. Aufbauend auf
die Mittelwertbestimmung werden zusätzliche Grenzen definiert, anhand deren die aufkommenden
neuen Summen mit fraktionierten Gewichtungen optimal gewählt werden. Basierend auf der
Anzahl 𝑚 an Bits die aus einer Summe extrahiert werden sollen, wird dieses Verfahren 𝑚-Mal mit
allen entstehenden Unterverteilungen durchgeführt.
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Abbildung 5: Darstellung des rekursiven Algorithmus

Abbildung  5 zeigt das grundsätzliche Schema für den Rekursiven Algorithmus auf. Zu Beginn
werden die anfänglichen Eingangswerte nach der Methode zur Betragsoptimierung verarbeitet.
Anschließend wird die Verteilung in zwei symmetrische Unterverteilungen aufgeteilt. Für jede
neue Unterverteilung jeweils eine neue Quantisierergrenze über den Median dieser Unterverteilung
definiert. n1 beschreibt das Skalar, welches in allen möglichen Kombinationen auf die Helperdaten
der Linearkombinationen von u1 addiert bzw. subtrahiert wird. Aus den neu gefundenen möglichen
Linearkombinationen wird nun diejenige gewählt, welche möglichst weit weg von den neu definier-
ten Grenzen liegt. Dieses Verfahren wird nun iterativ auf jeder weitere Unterverteilung angewendet
bis die Anzahl der Verteilungen log2(𝑚) entspricht, wobei 𝑚 die Anzahl der zu quantisierenden
Bits definiert.

Ein erstes positives Ergebnis hier war die schnelle Konvergenz der Verteilung und die Gleichver-
teilung der quantisierten Symbole, da in jeden Grenzbereich möglichst gleich viele Summen gelegt
worden sind. Abbildung 6 zeigt das Ergebnis des rekursiven Ansatzes für die Quantisierung von
2 Bit.

Abbildung 6: Verteilung der Eingangswerte nach dem rekursiven Ansatz
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Jedoch stellte sich nach der Analyse der verwendeten Helperdatenvektoren heraus, dass durch die
Zuweisung der Helperdaten Informationen über den Schlüssel ableitbar sind.

Abbildung 7: Verteilung der Helperdatenvektoren für jedes Bitsymbol

Das Histogramm in Abbildung  7 zeigt dieses Problem auf. Damit über die Helperdaten keine
Informationen über den Schlüssel bekannt werden, muss jeder verwendete Helperdatenvektor von
jedem Symbol gleich häufig verwendet werden. Mit diesem Ansatz werden von je zwei Symbolen
jedoch nur vier von acht möglichen Helperdatenvektoren verwendet.

3.2.2. Vorgabe des Codeworts
Eine weitere getestete Methode bestand aus dem vorgeben des zu verwendeten Codewords bzw.
Schlüssels. Hierfür werden die Grenzen der Quantisiererfunktion über die kumulative Verteilungs-
funktion der Eingangswerte bestimmt. Anschließend wird jene Summe mit Helperdaten gewählt,
welche die Summe zu ihrem vorgegebenen Codewort quantisieren.
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Abbildung 8: Verteilung nach der Verarbeitung mit vorgegebenem Codewort

Leider stellte sich die Vorgabe, jene Linearkombination zu wählen welche am besten ein vorgege-
benes Codewort approximiert nicht als praktikabel heraus, da – wie in Abbildung 8 zu sehen ist – bei
einer Verarbeitung für 2 Bit keine vier voneinander unterscheidbaren Unterverteilungen ergeben.
Nahe der 0 lässt sich lediglich eine kleine Abweichung vom 1-bit Fall feststellen, welche aber nicht
signifikant genug ist, um die Bitfehlerrate zu minimieren.

3.2.3. Brute-Force-Ansatz
Als letzten möglichen Lösungsansatz wurde ein Brute-Force-Ansatz untersucht. Um die optima-
len Grenzen für eine Quantisierung höherer Ordnung zu erhalten, wurden für verschiedene
Quantisierergrenzen die Verteilungen der Quantisierten Codewörter analysiert. Im Detail wurde
für eine große Menge an möglichen Grenzen die Distanzmaximierung der Linearkombinationen
durchgeführt. Direkt im Anschluss wurde über Pearson’s Chi-square Test die Gleichverteilung der
Quantisierten Symbole überprüft und nach einem Maximum des Ergebnisses des Tests gesucht.
Abbildung 9 zeigt das Ergebnis der Verarbeitung dieser Grenzen für einen 3-bit Fall.

Da diese Brute-Force Operation sehr rechenaufwendig ist, wurden die bereits in Julia implemen-
tierten Lösungen für parallel Computing eingesetzt und die Berechnung der idealen Grenzen auf
einem Computer mit hoher Rechenkapazität ausgelagert.

Damit das parallele Rechnen eine signifikante Verbesserung in der Rechengeschwindigkeit erzielt,
gab es einige Punkte zu beachten:
• Für einen festgelegten Datensatz ändern sich die möglichen gewichteten Summen nicht während

der Ausführung des Algorithmus’, also können diese vorab berechnet und gespeichert werden.
• Das Verwenden der „pmap“ Funktion zur parallelen Ausführung des Optimierungsalgorithmus

hat den Rechenprozess um ca. 700ms verlangsamt.
Eine effizientere Lösung besteht darin, bei der Ausführung des Julia Skripts die Anzahl an Threads
vorzudefinieren und die jeweiligen Funktionen mit dem „@everywhere“ Flag zu markieren, damit
sie von den verschiedenen Threads aufgerufen werden können.
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Abbildung 9: Resultat nach Verwendung der durch den Brute-Force Ansatz gefundenen Grenzen

Auch die Betrachtung des Histogramms der Verteilung der Helperdaten zeigt befriedigende Ergeb-
nisse auf. Wie in Abbildung 10 zu sehen ist, wird jeder Helperdatenvektor von jedem Symbol gleich
häufig verwendet.

Abbildung 10: Resultat nach Verwendung der durch den Brute-Force Ansatz gefundenen Grenzen

Außerdem ist über diese Methode eine signifikante Verbesserung de Bitfehlerrate im Bezug auf eine
Quantisierung ohne Vorverarbeitung und Fehlerkorrekturcode vorzuweisen, weshalb sich hier gute
Chancen auf ein zukünftiges Nutzbares Verfahren abbilden.
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3.2.4. Portieren der BCH-Code Python Bibliothek
Für die weitere Integration und vollständige Implementierung zu einem allgemeinen Simulations-
programm, das die gesamte Fehlerkorrektur bis zum Schlüssel abdeckt, ist ein BCH-Fehlerkorrektur-
Code als Python-Codebasis vorgegeben worden. Damit dieser auf die bereits in Julia programmier-
ten Implementierungen angewendet werden kann, wurde diese Codebasis vollständig von Python
nach Julia portiert. Hierzu waren kleinere Zwischenrecherchen im Bezug auf die Differenzen und
Ähnlichkeiten der beiden Sprachen notwendig, um eine ordnungsgemäße Portierung durchführen
zu können.

Aufgrund des kurz darauf folgenden Endes der Anstellung im Rahmen der Ingenieurspraxis war es
leider nicht mehr möglich den portierten BCH-Code im Zusammenhang mit der gefundenen Lösung
zur Optimierung der Grenzen einzusetzen.
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4. Ergebnisse & Zusammenfassung
Insgesamt sind die meisten geplanten Ziele zum Erfolg der Ingenieurspraxis erreicht worden. Da
mit einer der getesteten Methoden zur Optimierung der Grenzen eine reproduzierbare Lösung
gefunden wurde, stellen sich auch spannende zukünftige Projekte in diesem Gebiet auf. Insgesamt
könnte der Brute-Force Ansatz noch weiter optimiert werden, etwa mit einer iterativen Erhöhung
der Genauigkeit der Grenzen um so auch bei sehr hohen Symbolbreiten genaue Grenzen bestimmen
zu können. Da die optimalen Grenzen für den 2- und 4-bit Fall mit einer mittelwertfreien Standard-
normalverteilung bestimmt worden sind, lassen sich die hier bereits gefundenen Grenzen leicht
auf weitere Normalverteilungen mit anderen Parametern übertragen. Außerdem besteht die Mög-
lichkeit des Zusammenstellens einer Datenbank mit den numerisch optimalen Grenzen für dieses
Problem für verschiedene Symbolbreiten. Obwohl letztendlich keine vollständige Integration des
portierten BCH-Codes stattgefunden hat, bietet die nun portierte Bibliothek eine solide Grundlage
für zukünftige Integration auch in anderen Projekten.

16



Abkürzungsverzeichnis
PUF – physical unclonable function 4, 5, 5

SMHD – S-Metric Helper Data method 5, 5

TMHD – Two Metric Helper Data method 5, 5
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