Big brain stuff
This commit is contained in:
parent
bec0722111
commit
0cc1e27cb5
4 changed files with 52 additions and 9 deletions
|
|
@ -239,7 +239,6 @@ This is also shown in @fig:smhd_2_2_reconstruction, as our quantizer curve is mo
|
||||||
If a odd number of metrics is given, the offset can still be calculated using @eq:offset. Additionally, we will keep the original quantizer used during enrollment (@fig:smhd_3_2_reconstruction).
|
If a odd number of metrics is given, the offset can still be calculated using @eq:offset. Additionally, we will keep the original quantizer used during enrollment (@fig:smhd_3_2_reconstruction).
|
||||||
|
|
||||||
Comparing @fig:smhd_2_2_reconstruction, @fig:smhd_3_2_reconstruction and their respective values of @eq:offset, we can observe, that the offset $phi$ gets smaller the more metrics we use.
|
Comparing @fig:smhd_2_2_reconstruction, @fig:smhd_3_2_reconstruction and their respective values of @eq:offset, we can observe, that the offset $phi$ gets smaller the more metrics we use.
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
#figure(
|
#figure(
|
||||||
|
|
@ -254,12 +253,52 @@ Comparing @fig:smhd_2_2_reconstruction, @fig:smhd_3_2_reconstruction and their r
|
||||||
caption: [Offset values for 2-bit configurations]
|
caption: [Offset values for 2-bit configurations]
|
||||||
)<tab:offsets>
|
)<tab:offsets>
|
||||||
|
|
||||||
Before we can go deeper into the properties of the offset value $phi$, we will introduce a way to programmatically find the offset values for all s quantizers.
|
Lets look deeper into the properties of the offset value $phi$.
|
||||||
#figure(
|
As previously stated, we will need to move the enrollment quantizer $s/2$ times to the left and $s/2$ times to the right.
|
||||||
kind: "algorithm",
|
For example, setting parameter $s$ to $4$ means we will need to need to move the enrollment quantizer $lr(s/2 mid(|))_(s=4) = 2$ times to the left and right.
|
||||||
supplement: [Algorithm],
|
As we can see in @fig:4_2_offsets, $phi$ for the indices $i = plus.minus 2$ are identical to the offsets of a 2-bit 2-metric configuration.
|
||||||
|
In fact, this property carries on for higher even numbers of metrics.
|
||||||
|
|
||||||
|
#grid(
|
||||||
|
columns: (1fr, 1fr),
|
||||||
|
[#figure(
|
||||||
|
table(
|
||||||
|
columns: (5),
|
||||||
|
inset: 7pt,
|
||||||
|
align: center + horizon,
|
||||||
|
[$bold(i)$], [$-2$], [$-1$], [$1$], [$2$],
|
||||||
|
[*Metric*], [M1], [M2], [M3], [M4],
|
||||||
|
[$bold(phi)$], [$-frac(1, 16)$], [$-frac(1, 32)$], [$frac(1, 32)$], [$frac(1, 16)$]
|
||||||
|
),
|
||||||
|
caption: [2-bit 4-metric offsets]
|
||||||
|
)<fig:4_2_offsets>
|
||||||
|
],
|
||||||
|
[#figure(
|
||||||
|
table(
|
||||||
|
columns: (7),
|
||||||
|
align: center + horizon,
|
||||||
|
inset: 7pt,
|
||||||
|
[$bold(i)$], [$-3$], [$-2$], [$-1$], [$1$], [$2$], [$3$],
|
||||||
|
[*Metric*], [M1], [M2], [M3], [M4], [M5], [M6],
|
||||||
|
[$bold(phi)$], [$-frac(1, 16)$], [$-frac(1, 24)$], [$-frac(1, 48)$], [$frac(1, 48)$], [$frac(1, 24)$], [$frac(1, 16)$]
|
||||||
|
),
|
||||||
|
caption: [2-bit 6-metric offsets]
|
||||||
|
)<fig:6_2_offsets>
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
At $m=6$ metrics, the biggest offset we encounter is $phi = 1/16$ at $i = plus.minus 3$.\
|
||||||
|
In conclusion, the maximum offset for a 2-bit configuration $phi$ is $1/16$ and we will introduce smaller offsets in between if we use a higher even number of metrics. More formally, we can define the maximum offset for an even number of metrics as follows:
|
||||||
|
$ phi_("max,even") = frac(frac(m,2), 2^n dot m dot 2) = frac(1, 2^n dot 4) $<eq:max_offset_even>
|
||||||
|
|
||||||
|
Here, we multiply @eq:offset with the maximum offsetting index $i_"max" = s/2$.
|
||||||
|
|
||||||
|
Now, if we want to find the maximum offset for a odd number of metrics, we need to modify @eq:max_offset_even, more specifically its numerator.
|
||||||
|
We know, that we need to keep the original quantizer for a odd number of metrics, besides that, the method stays the same.
|
||||||
|
For that reason, we will decrease the parameter $m$ by $1$:
|
||||||
|
$
|
||||||
|
phi_"max_odd" &= frac(frac(m-1, 2), 2^n dot m dot 2)\
|
||||||
|
&= lr(frac(m-1, 2^n dot m dot 4)mid(|))_(n=2, m=3) = 1/24
|
||||||
|
$
|
||||||
|
|
||||||
include("../pseudocode/find_quantizers.typ")
|
|
||||||
)<alg:fancy>
|
|
||||||
|
|
||||||
As shown in @alg:fancy
|
|
||||||
|
|
|
||||||
BIN
main.pdf
BIN
main.pdf
Binary file not shown.
4
main.typ
4
main.typ
|
|
@ -6,6 +6,10 @@
|
||||||
#import "@preview/tablex:0.0.8"
|
#import "@preview/tablex:0.0.8"
|
||||||
#import "@preview/unify:0.6.0"
|
#import "@preview/unify:0.6.0"
|
||||||
#import "@preview/quill:0.3.0"
|
#import "@preview/quill:0.3.0"
|
||||||
|
#import "@preview/equate:0.2.0": equate
|
||||||
|
|
||||||
|
#show: equate.with(breakable: true, sub-numbering: true)
|
||||||
|
#set math.equation(numbering: "(1.1)")
|
||||||
|
|
||||||
#import "template/conf.typ": conf
|
#import "template/conf.typ": conf
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -36,7 +36,7 @@
|
||||||
|
|
||||||
pagebreak()
|
pagebreak()
|
||||||
|
|
||||||
set math.equation(numbering: "(1)")
|
//set math.equation(numbering: "(1)")
|
||||||
|
|
||||||
set page(
|
set page(
|
||||||
paper: "a4",
|
paper: "a4",
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue