Not very much progress today
This commit is contained in:
parent
0ab044355e
commit
3f1c6e15a0
3 changed files with 20 additions and 13 deletions
|
|
@ -12,6 +12,8 @@ Before we take a look at the higher order quantization cases, we will start with
|
||||||
|
|
||||||
#figure(
|
#figure(
|
||||||
include("./../graphics/quantizers/bach/sign-based-overlay.typ"),
|
include("./../graphics/quantizers/bach/sign-based-overlay.typ"),
|
||||||
caption: [Nice graph]
|
caption: [1-bit quantizer with the PDF of a normal distribution]
|
||||||
)
|
)<fig:1-bit_normal>
|
||||||
|
|
||||||
|
If we overlay the PDF of a zero-mean Gaussian distributed variable $X$ with a sign-based quantizer function as shown in @fig:1-bit_normal, we can see that the expected value of the Gaussian distribution overlaps with the decision threshold of the sign-based quantizer.
|
||||||
|
Considering that the margin of error of the value $x$ is comparable with the one shown in @fig:tmhd_example_enroll, we can conclude that values of $X$
|
||||||
|
|
|
||||||
|
|
@ -1,27 +1,32 @@
|
||||||
#import "@preview/cetz:0.2.2": *
|
#import "@preview/cetz:0.2.2": *
|
||||||
|
|
||||||
|
#let ymax = 1/calc.sqrt(2*calc.pi)
|
||||||
|
|
||||||
#let line_style = (stroke: (paint: black, thickness: 2pt))
|
#let line_style = (stroke: (paint: black, thickness: 2pt))
|
||||||
#let dashed = (stroke: (dash: "dashed"))
|
#let dashed = (stroke: (dash: "dashed"))
|
||||||
#canvas({
|
#canvas({
|
||||||
plot.plot(size: (8,4),
|
plot.plot(size: (8,4),
|
||||||
|
legend: "legend.north",
|
||||||
|
legend-style: (orientation: ltr, item: (spacing: 0.5)),
|
||||||
x-tick-step: none,
|
x-tick-step: none,
|
||||||
x-ticks: ((0, [0]), (100, [0])),
|
x-ticks: ((0, [0]), (100, [0])),
|
||||||
y-label: $cal(Q)(1, x)$,
|
y-label: $cal(Q)(1, x), xi(x)$,
|
||||||
x-label: $x$,
|
x-label: $x$,
|
||||||
y-tick-step: 1,
|
y-tick-step: none,
|
||||||
|
y-ticks: ((0, [0]), (ymax, [1])),
|
||||||
axis-style: "left",
|
axis-style: "left",
|
||||||
x-min: -3,
|
x-min: -3,
|
||||||
x-max: 3,
|
x-max: 3,
|
||||||
y-min: 0,
|
y-min: 0,
|
||||||
y-max: 1,{
|
y-max: ymax,{
|
||||||
plot.add(((-3,0), (0,0), (0,1), (3,1)), style: line_style)
|
plot.add(
|
||||||
plot.add(plot.sample-fn(
|
plot.sample-fn(
|
||||||
(x) => 1/calc.sqrt(2*calc.pi)*calc.exp(-(calc.pow(x,2)/2)),
|
(x) => 1/calc.sqrt(2*calc.pi)*calc.exp(-(calc.pow(x,2)/2)),
|
||||||
(-3, 3),
|
(-3, 3),
|
||||||
300
|
300),
|
||||||
))
|
style: (stroke: (paint: red, thickness: 2pt)),
|
||||||
|
label: [PDF of a normal distribution]
|
||||||
|
)
|
||||||
|
plot.add(((-3,0), (0,0), (0,ymax), (3,ymax)), style: line_style, label: [$cal(Q)(1,x)$])
|
||||||
})
|
})
|
||||||
})
|
})
|
||||||
|
|
|
||||||
BIN
main.pdf
BIN
main.pdf
Binary file not shown.
Loading…
Add table
Add a link
Reference in a new issue