
Chair for Security in Information Technology
School of Computation, Information and Technology
Technical University of Munich

Towards Efficient Helper Data Algorithms for
Multi-Bit PUF Quantization

Marius Drechsler





Chair for Security in Information Technology
School of Computation, Information and Technology
Technical University of Munich

Towards Efficient Helper Data Algorithms
for Multi-Bit PUF Quantization

Marius Drechsler

Thesis for the attainment of the academic degree

Bachelor of Science (B.Sc.)

at the School of Computation, Information and Technology of the Technical University of Munich.

Examiner:
Prof. Dr. Georg Sigl

Supervisor:
M.Sc. Jonas Ruchti

Submitted:
Munich, 22.07.2024





Contents

1. Introduction ................................................................................................................... 6
1.1. Notation ................................................................................................................... 7

1.1.1. Tilde-Domain ................................................................................................. 8
1.1.1.1. Empirical cumulative distribution function (eCDF) ............................ 8

2. S-Metric Helper Data Method ...................................................................................... 9
2.1. Background ............................................................................................................. 9

2.1.1. Two-Metric Helper Data Method ................................................................... 9
2.1.2. S-Metric Helper Data Method (SMHD) ........................................................ 10

2.2. Realization ............................................................................................................. 11
2.2.1. Enrollment .................................................................................................... 11
2.2.2. Reconstruction ............................................................................................. 13

2.2.2.1. Offset properties ............................................................................. 15
2.3. Improvements ........................................................................................................ 17
2.4. Experiments ........................................................................................................... 17

2.4.1. Results & Discussion ................................................................................... 18
2.4.2. Helper Data Volume Trade-off ...................................................................... 19
2.4.3. Impact of temperature ................................................................................. 19
2.4.4. Gray coding ................................................................................................. 20
2.4.5. Usage of an eCDF ....................................................................................... 21

3. Boundary Adaptive Clustering with Helper Data ..................................................... 22
3.1. Optimizing a 1-bit sign-based quantization ........................................................... 22

3.1.1. Derivation of the resulting distribution ......................................................... 23
3.1.2. Generating helper-data ................................................................................ 24

3.2. Generalization to higher-order bit quantization ..................................................... 25
3.2.1. Realization of center point approximation ................................................... 26
3.2.2. Maximum quantizing bound distance approximation ................................. 28

3.3. Experiments ........................................................................................................... 28
3.4. Results & Discussion ............................................................................................. 28

Glossary ........................................................................................................................... 29

Bibliography .................................................................................................................... 30



6



1 Introduction
These are the introducing words

1.1 Notation
To ensure a consistent notation of functions and ideas, we will now introduce some required con-
ventions

Random distributed variables will be notated with a capital letter, i.e. 𝑋, its realization will be the
corresponding lower case letter, 𝑥.

Vectors will be written in bold text: 𝒌 represents a vector of quantized symbols. Matrices are denoted
with a bold capital letter: 𝑴

We will call a quantized symbol 𝑘. 𝑘 consists of all possible binary symbols, i.e. 0, 01, 110.

A quantizer will be defined as a function 𝒬(𝑥, 𝒂) that returns a quantized symbol 𝑘. We also define
the following special quantizers for metric based HDAs: A quantizer used during the enrollment
phase is defined by a calligraphic ℰ. For the reconstruction phase, a quantizer will be defined by a
calligraphic ℛ

Figure 1 shows the curve of a 2-bit quantizer that receives 𝑥̃ as input. In the case, that the value of 
𝑥̃ equals one of the four bounds, the quantized value is chosen randomly from the relevant bins.

0.25 0.5 0.75 1 𝑥̃

00

01

10

11
𝒬(2, 1, 𝑥̃)

0
Figure 1: Example quantizer function

For the S-Metric Helper Data Method, we introduce a function

𝒬(𝑆, 𝑀), (1)

where 𝑆 determines the number of metrics and 𝑀  the bit width of the symbols. The corresponding
metric is defined through the lower case 𝑠, the bit symbol through the lower case 𝑚.

7



1.1.1 Tilde-Domain
AS also described in [1], we will use a CDF to transform the real PUF values into the Tilde-Domain
This transformation can be performed using the function 𝜉 = 𝑥̃. The key property of this transfor-
mation is the resulting uniform distribution of 𝑥.

Considering a normal distribution, the CDF is defined as

𝜉(
𝑥 − 𝜇

𝜎
) =

1
2
[1 + 𝑒𝑟𝑓(

𝑥 − 𝜇
𝜎
√

2
)] (2)

Empirical cumulative distribution function (eCDF)

The eCDF is constructed through sorting the empirical measurements of a distribution [2]. Although
less accurate, this method allows a more simple and less computationally complex way to transform
real valued measurements into the Tilde-Domain. We will mainly use the eCDF in Section 2 because
of the difficulty of finding an analytical description for the CDF of a Gaussian-Mixture.
To apply it, we will sort the vector of realizations 𝒛 of a random distributed variable 𝑍 in ascending
order. The function for an eCDF can be defined as

𝜉eCDF(𝑥) =
number of elements in 𝒛, that ≤ 𝑥

𝑛
∈ [0, 1], (3)

where 𝑛 defines the number of elements in the vector 𝒛. If the vector 𝒛 were to contain the elements
[1, 3, 4, 5, 7, 9, 10] and 𝑥 = 5, Equation 3 would result to 𝜉eCDF(5) = 4

7 .
The application of Equation 3 on 𝑋 will transform its values into the empirical tilde-domain.

We can also define an inverse eCDF:

𝜉−1
eCDF(𝑥̃) = 𝑥̃ ⋅ 𝑛 (4)

The result of Equation 4 is the index 𝑖 of the element 𝑧𝑖 from the vector of realizations 𝒛.

8



2 S-Metric Helper Data Method
A metric based helper data algorithm (HDA) generates helper data at PUF enrollment to provide
more reliable results at the reconstruction stage. Each of these metrics correspond to a quantizer
with different bounds to lower the risk of bit or symbol errors during reconstruction. For this kind
of HDA, the generated metric is used as helper data and thus does not have to be kept secret.

2.1 Background
Before we turn to a concrete realization of the S-Metric method, let’s take a look at its predecessor,
the Two-Metric Helper Data Method.

2.1.1 Two-Metric Helper Data Method
The most simple form of a metric-based HDA is the Two-Metric Helper Data Method, since the
quantization only yields symbols of 1-bit width and uses the least amount of metrics possible if we
want to use more than one metric.

Figure 2 and Figure 3 illustrate an example enrollment and reconstruction process. We would con-
sider the marked point the value of the initial measurement and the marked range our margin of
error. If we now were to use the original quantizer shown in Figure 2 during both the enrollment
and the reconstruction phases, we would risk a bit error, because the margin of error overlaps with
the lower quantization bound −𝑎, which we can call a point of uncertainty. But since we generated
helper data during enrollment as depicted in Figure 4, we can make use of a different quantizer 
ℛ(1, 2, 𝑥) whose boundaries do not overlap with the error margin.

-a a0 𝑥0

1
ℰ(1, 2, 𝑥)

Figure 2: Example enrollment
-a a0 𝑥0

1
ℛ(1, 2, 𝑥)

Figure 3: Example reconstruction

Publications [3] and [4] find all the relevant bounds for the enrollment and reconstruction phases
under the assumption that the PUF readout (our input value 𝑥) is zero-mean Gaussian distributed.
Because the parameters for symbol width and number of metrics always stays the same, we can –
without loss of generality – assume the standard deviation as 𝜎 = 1 and calculate the bounds for 8
equi-probable areas for this distribution. This is done by finding two bounds 𝑎 and 𝑏 such, that

∫
𝑏

𝑎
𝑓𝑋(𝑥)𝑑𝑥 =

1
8

(5)

9



This operation yields 9 bounds defining these areas −∞, −𝑇1, −𝑎, −𝑇2, 0, 𝑇2, 𝑎, 𝑇1 and +∞.
During the enrollment phase, we will use ±𝑎 as our quantizing bounds, returning 0 if the The cor-
responding metric is chosen based on the following conditions:

𝑀 = {
𝑀1, 𝑥 < −𝑎 ∨ 0 < 𝑥 < 𝑎
𝑀2, −𝑎 < 𝑥 ∨ 1 < 𝑎 < 𝑥 . (6)

Figure 4 shows the curve of a quantizer 𝒬 that would be used during the Two-Metric enrollment
phase. At this point we will still assume that our input value 𝑥 is zero-mean Gaussian distributed.

-a a0 𝑥0

1
ℰ(1, 2, 𝑥)

Use metric 1 Use metric 2
Figure 4: Two-Metric enrollment

-a a0-T1 T1T2-T2 𝑥0

1
ℛ(1, 2, 𝑥)

Metric 1 Metric 2
Figure 5: Two-Metric reconstruction

As previously described, each of these metrics correspond to a different quantizer. Now, we can use
the generated helper data in the reconstruction phase and define a reconstructed bit based on the
chosen metric as follows:

𝑀1 : 𝑘 = {
0, 𝑥 < 𝑇1 ∨ 𝑇2 < 𝑥
1, −𝑇1 < 𝑥 < 𝑇2 , 𝑀2 : 𝑘 = {

0, 𝑥 < −𝑇2 ∨ 𝑇1 < 𝑥
1, −𝑇2 < 𝑥 < 𝑇1 . (7)

Figure 5 illustrates the basic idea behind the Two-Metric method. Using the helper data, we will
move the bounds of the original quantizer (Figure 2) one octile to each side, yielding two new quan-
tizers. The advantage of this method comes from moving the point of uncertainty away from our
readout position.

2.1.2 S-Metric Helper Data Method (SMHD)
Going on, the Two-Metric Helper Data Method can be generalized as shown in [1]. This generaliza-
tion allows for higher-order bit quantization and the use of more than two metrics.

A key difference to the Two-Metric approach is the alignment of quantization areas. Methods de-
scribed in [3] and [4] use two bounds for 1-bit quantization, namely ±𝑎. Contrary, the method in-
troduced by Fischer in [1] would look more like a sign-based quantizer if the configuration 𝒬(2, 1)
is used, using only one quantization bound at 𝑥 = 0. Figure 6 and Figure 7 illustrate this difference, .

10



-a a0 𝑥0

1
ℰ(1, 2, 𝑥)

Figure 6: Two-Metric enrollment
00 𝑥0

1
ℰ(1, 2, 𝑥)

Figure 7: S-Metric enrollment with 1-bit configu-
ration

The generalization consists of two components:

• Higher-order bit quantization
We can introduce more steps to our quantizer and use them to extract more than one bit out of
our PUF readout.

• More than two metrics
Instead of splitting each quantizer into only two equi-probable parts, we can increase the number
of metrics at the cost of generating more helper data to increase reliability.

2.2 Realization
We will now propose a specific realization of the S-Metric Helper Data Method.
This allows us to use equi-distant bounds for the quantizer instead of equi-probable ones.

From now on we will use the following syntax for quantizers that use the S-Metric Helper Data
Method:

𝒬(𝑆, 𝑀, 𝑥̃), (8)

where 𝑆 defines the number of metrics, 𝑀  the number of bits and 𝑥̃ a Tilde-Domain transformed
PUF measurement.

2.2.1 Enrollment
To enroll our PUF key, we will first need to define the quantizer for higher order bit quantization and
helper data generation. Because our transformed PUF readout 𝑥̃ can be interpreted as a realization
of a uniformly distributed variable 𝑋̃, we can define the width Δ of our quantizer bins as follows:

Δ =
1

2𝑀 . (9)

For example, if we were to extract a symbol with the width of 2 bits from our PUF readout, we would
need to evenly space 22 = 4 bins. Using equation Equation 9, the step size for a 2-bit quantizer
would result to:

11



Δ′ =
1

2𝑀 |
𝑀=2

=
1
4
. (10)

Figure 8 shows a plot of the resulting quantizer function that would yield symbols with two bits for
one measurement 𝑥̃.

0.25 0.5 0.75 1 𝑥̃

00

01

10

11
𝒬(2, 1, 𝑥̃)

0
Figure 8: 2-bit quantizer

Right now, this quantizer wouldn’t help us generating any helper data. To achieve that, we will need
to divide a symbol step – one, that returns the corresponding quantized symbol - into multiple sub-
steps. Using 𝑆, we can define the step size Δ𝑆  as the division of Δ by 𝑆:

Δ𝑆 =
Δ
𝑆

=
1

2𝑀

𝑆
=

1
2𝑀 ⋅ 𝑆

(11)

We can now redefine our previously defined quantizer function to not only return the quantized
symbol, but a tuple consisting of the quantized symbol and the metric ascertained that we will save
as helper data for later.

Going on in our example, we could choose the amount of our metrics to be 2. According to Equa-
tion 11, we would then half our step size:

Δ′
𝑆 =

Δ′

𝑆
|
𝑆=2

=
1

4 ⋅ 2
=

1
8

(12)

This means, we can update our quantizer function with the new step size Δ′
𝑆 = 1

8  and redefining
its output as a tuple consisting of bit value and helper data.

We can visualize the quantizer that we will use during the enrollment phase of a 2-bit 2-metric
configuration as depicted in Figure 9.

12



0.25 0.5 0.75 1 𝑥̃

M1

M2

M1

M2

M1

M2

M1

M2
ℰ(2, 2, 𝑥̃)

0

00

01

10

11

Figure 9: 2-bit 2-metric enrollment
0.25 0.5 0.75 1 𝑥̃

M1
M2
M3
M1
M2
M3
M1
M2
M3
M1
M2
M3

ℰ(3, 2, 𝑥̃)

0

00

01

10

11

Figure 10: 2-bit 3-metric enrollment

To better demonstrate the generalization to 𝑆-metrics, Figure 10 shows a 2-bit quantizer that gen-
erates helper data based on three metrics instead of two. In that sense, increasing the number of
metrics will increase the number of sub-steps for each symbol.

We can now perform the enrollment of a full PUF readout. Each measurement will be quantized
with out quantizer ℰ, returning a tuple consisting of the quantized symbol and helper data.

𝐾𝑖 = ℰ(𝑠, 𝑚, 𝑥𝑖) = (𝑘, ℎ)𝑖 . (13)

Performing the operation of Equation 13 for our whole set of measurements will yield a vector of
tuples 𝑲.

2.2.2 Reconstruction
We already demonstrated the basic principle of the reconstruction phase in section Section 2.1.1,
which showed the advantage of using more than one quantizer during reconstruction.

We will call our repeated measurement of 𝑥̃ that is subject to a certain error 𝑥∗. To perform recon-
struction with 𝑥∗, we will first need to find all 𝑆 quantizers for which we generated the helper data
in the previous step.

We have to distinguish the two cases, that 𝑆 is either even or odd:
If 𝑆 is even, we need to define 𝑆 quantizers offset by some distance 𝜑. We can define the ideal
position for the quantizer bounds based on its corresponding metric as centered around the center
of the related metric.

We can find these new bounds graphically as depicted in Figure 11. We first determine the x-values
of the centers of a metric (here M1, as shown with the arrows). We can then place the quantizer
steps with step size Δ (Equation 9) evenly spaced around these points. With these new points for
the vertical steps of 𝒬, we can draw the new quantizer for the first metric in Figure 12.

13



3/16 7/16 11/16 15/16 𝑥̃

M1

M2

M1

M2

M1

M2

M1

M2
ℰ(2, 2, 𝑥̃)

0

00

01

10

11

Figure 11: Ideal centers and bounds for the M1
quantizer

⇒

3/16 7/16 11/16 15/16 𝑥̃

00

01

10

11
𝒬m1(2, 2, 𝑥̃)

0
Figure 12: Quantizer for the first metric

As for metric 2, we can apply the same strategy and find the points for the vertical steps to be at 
1
16 ,

5
16 ,

9
16  and 13

16 . This quantizer is shown together with the first-metric quantizer in Figure 13, form-
ing the complete quantizer for the reconstruction phase of a 2-bit 2-metric configuration ℛ(2, 2, 𝑥̃).

0.25 0.5 0.75 1 𝑥̃

00

01

10

11
ℛ(2, 2, 𝑥̃)

0

+𝜑

−𝜑

Metric 1 Metric 2
Figure 13: 2-bit 2-metric reconstruction quantizer

0.25 0.5 0.75 1 𝑥̃

00

01

10

11
ℛ(3, 2, 𝑥̃)

0
Metric 1 Metric 2 Metric 3

Figure 14: 2-bit 3-metric reconstruction quantizer

Analytically, the offset we are applying to ℰ(2, 2, 𝑥̃) can be defined as

Φ =
1

2𝑀 ⋅ 𝑆 ⋅ 2
|
𝑀=2,𝑆=2

=
1
16

 . (14)

Φ is the constant that we will multiply with a certain metric index 𝑖 to obtain the metric offset 𝜑,
which is used to define each of the 𝑆 different quantizers for reconstruction. In Figure 13, the two

14



metric indices 𝑖 = ±1 will be multiplied with Φ, yielding two quantizers, one moved 1
16  to the left

and one moved 1
16  to the right.

If a odd number of metrics is given, the offset can still be calculated using Equation 14. Addition-
ally, we will keep the original quantizer used during enrollment as the quantizer for metric 𝑠−1

2
(Figure 14).

To find all metric offsets for values of 𝑆 > 3, we can use Algorithm 1. For application, we calculate
𝜑 based on 𝑆 and 𝑀  using Equation 14. The resulting list of offsets is correctly ordered and can be
mapped to the corresponding metrics in ascending order.

Algorithm 1: Find all offsets 𝜑

1 input Φ, 𝑆
2 list offsets 𝜑
3 if 𝑆 is odd
4 𝑆 = 𝑠 − 1
5 append 0 to list offsets
6 while 𝑖 ≤ 𝑆

2
7 append +(𝑖 ⋅ Φ) to list offsets
8 append −(𝑖 ⋅ Φ) to list offsets
9 sort list offsets in ascending order

10 return offsets
11 end

Offset properties

Before we go on and experimentally test this realization of the S-Metric method, let’s look deeper
into the properties of the metric offset value 𝜑.
Comparing Figure 13, Figure 14 and their respective values of Equation 14, we can observe, that the
offset Φ gets smaller the more metrics we use.

Table 1: Offset values for 2-bit configurations

𝑀 1 2 3 4 5 6 7 8 9 10

Φ 1
8

1
16

1
24

1
32

1
40

1
48

1
56

1
64

1
72

1
80

As previously stated, we will need to define 𝑆 quantizers, 𝑆
2  times to the left and 𝑆

2  times to the
right. For example, setting parameter 𝑆 to 4 means we will need to move the enrollment quantizer
𝑆
2 |

𝑆=4
= 2 times to the left and right. As we can see in Table 2, 𝜑 for the maximum metric indices 

𝑖 = ±2 are identical to the offsets of a 2-bit 2-metric configuration. In fact, this property carries on
for higher even numbers of metrics, as shown in Table 3.

15



Table 2: 2-bit 4-metric offsets

𝒊 −2 −1 1 2

Metric M1 M2 M3 M4

𝝋 − 1
16 − 1

32
1
32

1
16

Table 3: 2-bit 6-metric offsets

𝒊 −3 −2 −1 1 2 3

Metric M1 M2 M3 M4 M5 M6

𝝋 − 1
16 − 1

24 − 1
48

1
48

1
24

1
16

At 𝑠 = 6 metrics, the biggest metric offset we encounter is 𝜑 = 1
16  at 𝑖 = ±3.

This biggest (or maximum) offset is of particular interest to us, as it tells us how far we deviate from
the original quantizer used during enrollment. The maximum offset for a 2-bit configuration 𝜑 is 1

16
and we will introduce smaller offsets in between if we use a higher even number of metrics.

More formally, we can define the maximum metric offset for an even number of metrics as follows:

𝜑max,even =
𝑆
2

2𝑀 ⋅ 𝑆 ⋅ 2
=

1
2𝑀 ⋅ 4

(15)

Here, we multiply Equation 14 by the maximum metric index 𝑖max = 𝑆
2 .

Now, if we want to find the maximum offset for a odd number of metrics, we need to modify Equa-
tion 15, more specifically its numerator. For that reason, we will decrease the parameter 𝑚 by 1,
that way we will still perform a division without remainder:

𝜑max,odd =
𝑆−1

2
2𝑛 ⋅ 𝑆 ⋅ 2

(16.1)

=
𝑆 − 1

2𝑀 ⋅ 𝑆 ⋅ 4
|
𝑀=2,𝑆=3

=
1
24

(16.2)

It is important to note, that 𝜑max,odd, unlike 𝜑max,even, is dependent on the parameter 𝑆 as we can
see in Table 4.

Table 4: 2-bit maximum offsets, odd

S 3 5 7 9

𝝋𝐦𝐚𝐱,𝐨𝐝𝐝
1
24

1
20

3
56

1
18

The higher 𝑆 is chosen, the closer we approximate 𝜑max,even as shown in Equation 17.1. This means,
while also keeping the original quantizer during the reconstruction phase, the maximum offset for
an odd number of metrics will always be smaller than for an even number.

lim
𝑆→∞

𝜑max,odd =
𝑆 − 1

2𝑀 ⋅ 𝑆 ⋅ 4
(17.1)

=
1

2𝑀 ⋅ 4
= 𝜑max,even (17.2)

16



Because 𝜑max,odd only approximates 𝜑max,even if 𝑆 → ∞ we can assume, that configurations with an
even number of metrics will always perform marginally better than configurations with odd num-
bers of metrics because the bigger maximum offset allows for better reconstructing capabilities.

2.3 Improvements
The by [1] proposed S-Metric Helper Data Method can be improved by using gray coded labels for
the quantized symbols instead of naive ones.

0.25 0.5 0.75 1 𝑥̃

00

01

11

10
𝒬(2, 1, 𝑥̃)

0
Figure 15: Gray Coded 2-bit quantizer

Figure 15 shows a 2-bit quantizer with gray-coded labelling. In this example, we have an advantage
at 𝑥̃ = ~0.5, because a quantization error only returns one wrong bit instead of two.

Furthermore, the transformation into the Tilde-Domain could also be performed using the eCDF to
achieve a more precise uniform distribution because we do not have to estimate a standard deviation
of the input values.

2.4 Experiments
We tested the implementation of Section 2.2 with the temperature dataset of [5]. The dataset con-
tains counts of positives edges of a toggle flip flop at a set evaluation time 𝐷. Based on the count and
the evaluation time, the frequency of a ring oscillator can be calculated using: 𝑓 = 2 ⋅ 𝑘

𝐷 . Because we
want to analyze the performance of the S-Metric method over different temperatures, both during
enrollment and reconstruction, we are limited to the second part of the experimental measurements
of [5]. We will have measurements of 50 FPGA boards available with 1600 and 1696 ring oscillators
each. To obtain the values to be processed, we subtract them in pairs, yielding 800 and 848 ring
oscillator frequency differences df.
Since the frequencies f are normal distributed, the difference df can be assumed to be zero-mean
Gaussian distributed. To apply the values df to our implementation of the S-Metric method, we will

17



first transform them into the Tilde-Domain using an inverse CDF, resulti/invite ng in uniform dis-
tributed values 𝑑𝑓. Our resulting dataset consists of bit error rates (BERs) for quantization symbol
widths of up to 6 bits evaluated with generated helper-data from up to 100 metrics. We chose not
to perform simulations for bit widths higher than 6 bits, as we will see later that we have already
reached a bit error rate of approx. 10% for these configurations.

2.4.1 Results & Discussion
The bit error rate of different S-Metric configurations for naive labelling can be seen in Figure 16.
For this analysis, enrollment and reconstruction were both performed at room temperature and the
quantizer was naively labelled.

Figure 16: Bit error rates for same temperature execution. Here we can already observe the asymp-
totic loss of improvement in BERs for higher metric numbers

We can observe two key properties of the S-Metric method in Figure 16. The error rate in this plot
is scaled logarithmically.
The exponential growth of the error rate of classic 1-metric configurations can be observed through
the linear increase of the error rates. Also, as we expanded on in Section 2.2.2.1, using more metrics
will, at some point, not further improve the bit error rate of the key. At a symbol width of 𝑚 ≥ 6
bits, no further improvement through the S-Metric method can be observed.

18



1 2 3 4 5 6 𝑚

500

1000

1500

𝑥1(𝑚)
𝑥100(𝑚)

Figure 17: Asymptotic performance of SMHD

This tendency can also be shown through Figure 17. Here, we calculated the quotient of the bit error
rate using one metric and 100 metrics. From 𝑚 ≥ 6 onwards, 𝑥1(𝑚)

𝑥100(𝑚)  approaches ~1, which means,
no real improvement is possible anymore through the S-Metric method.

2.4.2 Helper Data Volume Trade-off

2.4.3 Impact of temperature
We will now take a look at the impact on the error rates of changing the temperature both during
the enrollment and the reconstruction phase.

The most common case to look at, is if we consider a fixed temperature during enrollment, most
likely 25°𝐶 . Since we wont always be able to recreate lab-like conditions during the reconstruction
phase, it makes sense to look at the error rates at which reconstruction was performed at different
temperatures.

2 100 𝑠

10−4

10−3

10−2

10−1
Bit error rate

5°𝐶
25°𝐶
15°𝐶
35°𝐶
45°𝐶
55°𝐶

Figure 18: BERs for reconstruction at different temperatures. Generally, the further we move away
from the enrollment temperature, the worse the BER gets.

Figure 18 shows the results of this experiment conducted with a 2-bit configuration.
As we can see, the further we move away from the temperature of enrollment, the higher the bit
error rates turns out to be.

19



We can observe this property well in detail in Figure 19.
35

 3
5

25
 2

5
35

 4
5

5 
5

45
 4

5
25

 3
5

55
 5

5
45

 5
5

25
 1

5
45

 3
5

55
 4

5
15

 1
5

35
 2

5
35

 1
5

5 
15

15
 5

25
 5

15
 2

5
15

 3
5

55
 3

5
45

 2
5

5 
25

35
 5

5
25

 4
5

35
 5

45
 1

5
55

 2
5

5 
35

15
 4

5
25

 5
5

45
 5

55
 1

5
5 

45
15

 5
5

55
 5

5 
55

Operating configuration

10−4.5

10−4

10−3.5

10−3

10−2.5

10−2

B
it 

er
ro

r 
ra

te

0

10

20

30

40

50

Te
m

pe
ra

tu
re

 d
iff

er
en

ce

Figure 19: BERs for different enrollment and reconstruction temperatures. The lower number in the
operating configuration is assigned to the enrollment phase, the upper one to the reconstruction

phase. The correlation between the BER and the temperature is clearly visible here

Here, we compared the asymptotic performance of SMHD for different temperatures both during
enrollment and reconstruction. First we can observe that the optimum temperature for the operation
of SMHD in both phases for the dataset [5] is 35°𝐶 instead of the expected 25°𝐶 . Furthermore, the
BER seems to be almost directly correlated with the absolute temperature difference, especially at
higher temperature differences, showing that the further apart the temperatures of the two phases
are, the higher the BER.

2.4.4 Gray coding
In Section 2.3, we discussed how a gray coded labelling for the quantizer could improve the bit error
rates of the S-Metric method.

Because we only change the labelling of the quantizing bins and do not make any changes to SMHD
itself, we can assume that the effects of temperature on the quantization process are directly trans-
lated to the gray-coded case. Therefore, we will not perform this analysis again here.

Figure 20 shows the comparison of applying SMHD at room temperature for both naive and gray-
coded labels. There we can already observe the improvement of using gray-coded labelling, but the
impact of this change of labels can really be seen in Table 5. As we can see, the improvement rises
rapidly to a peak at a bit width of M=3 and then falls again slightly. This effect can be explained
with the exponential rise of the BER for higher bit widths 𝑀 . For 𝑀 > 3 the rise of the BER pre-
dominates the possible improvement by applying a gray-coded labelling.

20



Table 5: Improvement of using gray-coded instead of naive labelling, per bit width

M 1 2 3 4 5 6

Improvement 0% 24.75% 47.45% 46.97% 45.91% 37.73%

Figure 20: Comparison between BERs using naive labelling and gray-coded labelling

Using our dataset, we can estimate the average improvement for using gray-coded labelling to be
at around 33%.

2.4.5 Usage of an eCDF
• eCDF kann die Gleichverteilung der quantisierten Symbole verbessern, da keine standardabwe-

ichung geschätzt werden muss, dafür komplexer zum ausrechnen
• Vergleich mit zwei histogrammen für die Gleichverteilung der Symbole?
• BER auswerten, ist wahrscheinlich schlechter

21



3 Boundary Adaptive Clustering with
Helper Data
Instead of generating helper-data to improve the quantization process itself, like in SMHD, or using
some kind of error correcting code after the quantization process, we can also try to find helper-
data before performing the quantization that will optimize our input values before quantizing them
to minimize the risk of bit and symbol errors during the reconstruction phase.

Since this HDA modifies the input values before the quantization takes place, we will consider the
input values as zero-mean Gaussian distributed and not use a CDF to transform these values into
the tilde-domain.

3.1 Optimizing a 1-bit sign-based quantization
Before we take a look at the higher order quantization cases, we will start with a very basic method
of quantization: a quantizer, that only returns a symbol with a width of 1 bit and uses the sign of
the input value to determine the resulting bit symbol.

0 𝑥0

1
𝒬(1, 𝑥), 𝜉(𝑥)

PDF of a normal distribution 𝒬(1, 𝑥)

Figure 21: 1-bit quantizer with the PDF of a normal distribution

If we overlay the PDF of a zero-mean Gaussian distributed variable 𝑋 with a sign-based quantizer
function as shown in Figure 21, we can see that the expected value of the Gaussian distribution
overlaps with the decision threshold of the sign-based quantizer. Considering that the margin of
error of the value 𝑥 is comparable with the one shown in Figure 2, we can conclude that values of 𝑋
that reside near 0 are to be considered more unreliable than values that are further away from the
x-value 0. This means that the quantizer used here is very unreliable without generated helper-data.

Now, to increase the reliability of this quantizer, we can try to move our input values further away
from the value 𝑥 = 0. To do so, we can define a new input value 𝑧 as a linear combination of two
realizations of 𝑋, 𝑥1 and 𝑥2 with a set of weights ℎ1 and ℎ2:

𝑧 = ℎ1 ⋅ 𝑥1 + ℎ2 ⋅ 𝑥2. (18)

22



3.1.1 Derivation of the resulting distribution

To find a description for the random distribution 𝑍 of 𝑧 we can interpret this process mathematically
as a maximisation of a sum. This can be realized by replacing the values of 𝑥𝑖 with their absolute
values as this always gives us the maximum value of the sum:

𝑧 = |𝑥1| + |𝑥2| (19)

Taking into account, that 𝑥𝑖 are realizations of a normal distribution – that we can assume without
loss of generality to have its expected value at 𝑥 = 0 and a standard deviation of 𝜎 = 1 – we can
define the overall resulting random distribution 𝑍 to be:

𝑍 = |𝑋| + |𝑋|. (20)

We will redefine |𝑋| as a half-normal distribution 𝑌  whose PDF is

𝑓𝑌 (𝑦,𝜎) =
√

2
𝜎
√

𝜋
exp(−

𝑦2

2𝜎2 )|
𝜎=1

, 𝑦 ≥ 0 (21.1)

= √2
𝜋

exp(−
𝑦2

𝜎2 ). (21.2)

Now, 𝑍 simplifies to

𝑍 = 𝑌 + 𝑌 . (22)

We can assume for now that the realizations of 𝑌  are independent of each other. The PDF of the ad-
dition of these two distributions can be described through the convolution of their respective PDFs:

𝑓𝑍(𝑧) = ∫
𝑧

0
𝑓𝑌 (𝑦)𝑓𝑌 (𝑧 − 𝑦)𝑑𝑦 (23.1)

= ∫
𝑧

0
[√2

𝜋
exp(−

𝑦2

2
)√2

𝜋
exp(−

(𝑧 − 𝑦)2

2
)]𝑑𝑦 (23.2)

=
2
𝜋

∫
𝑧

0
exp(−

𝑦2 + (𝑧 − 𝑦)2

2
)𝑑𝑦 (23.3)

Evaluating the integral of Equation 23.3, we can now describe the resulting distribution of this max-
imisation process analytically:

𝑓𝑍 =
2

√
𝜋

exp(−
𝑧2

4
) erf(

𝑧
2
)𝑧 ≥ 0. (24)

Our derivation of 𝑓𝑍  currently only accounts for the addition of positive values of 𝑥𝑖, but two neg-
ative 𝑥𝑖 values would also return the maximal distance to the coordinate origin. The derivation for
the corresponding PDF is identical, except that the half-normal distribution Equation 21 is mirrored

23



around the y-axis. Because the resulting PDF 𝑓neg
𝑍  is a mirrored variant of 𝑓𝑍  and 𝑓𝑍  is arranged

symmetrically around the origin, we can define a new PDF 𝑓∗
𝑍  as

𝑓∗
𝑍(𝑧) = |𝑓𝑍(𝑧)|, (25)

on the entire z-axis. 𝑓∗
𝑍(𝑧) now describes the final random distribution after the application of our

optimization of the input values 𝑥𝑖.

0 𝑧0

1
𝒬(1, 𝑧), |𝑓𝑍(𝑧)|

Optimized PDF Quantizer
Figure 22: Optimized input values 𝑧 overlaid with sign-based quantizer 𝒬

Figure 22 shows two key properties of this optimization:
1. Adjusting the input values using the method described above does not require any adjustment

of the decision threshold of the sign-based quantizer.
2. The resulting PDF is zero at 𝑧 = 0 leaving no input value for the sign-based quantizer at its de-

cision threshold.

3.1.2 Generating helper-data
To find the optimal set of helper-data that will result in the distribution shown in Figure 22, we can
define the vector of all possible linear combinations 𝒛 as the vector-matrix multiplication of the two
input values 𝑥𝑖 and the matrix 𝑯 of all weight combinations:

𝒛 = 𝒙 ⋅ 𝑯 (26.1)

= (
𝑥1
𝑥2

) ⋅ [
ℎ1
ℎ2

−ℎ1
ℎ2

ℎ1
−ℎ2

−ℎ1
−ℎ2

] (26.2)

= (
𝑥1
𝑥2

) ⋅ [+1
+1

−1
+1

+1
−1

−1
−1] (26.3)

We will choose the optimal weights based on the highest absolute value of 𝒛, as that value will be the
furthest away from 0. We may encounter two entries in 𝒛 that both have the same highest absolute
value. In that case, we will choose the combination of weights randomly out of our possible options.

If we take a look at the dimensionality of the matrix of all weight combinations, we notice that
we will need to store log2(2) = 1 helper-data bit. In fact, we will show later, that the amount of
helper-data bits used by this HDA is directly linked to the number of input values used instead of
the number of bits we want to extract during quantization.

24



3.2 Generalization to higher-order bit quantization
We can generalize the idea of Section 3.1 and apply it for a higher-order bit quantization. Contrary
to SMHD, we will always use the same step function as quantizer and optimize the input values 
𝑥 to be the furthest away from any decision threshold. In this higher-order case, this means that
we want to optimise out input values as close as possible to the middle of a quantizer step or as far
away as possible from a decision threshold of the quantizer instead of just maximising the absolute
value of the linear combination.

Two different strategies to find the linear combination arise from this premise:
1. Center point approximation: Finding the linear combination that best approximates the cen-

ter of a quantizer step, since these points are the furthest away from any decision threshold.
2. Maximum quantizing bound distance approximation:Approximating the point that is the

furthest away directly through finding the linear combination with the maximum minimum dis-
tance to a decision threshold.

Although different in there respective implementations, both of these strategies aim to find a com-
bination of helper-data that will best approximate one point out of a set of optimal points for 𝑧.
Thus we will define a vector 𝓸 ∋ {ℴ1, ℴ2…, ℴ2𝑀} containing the optimal values that we want to
approximate with 𝑧. Its cardinality is 2𝑀 , while 𝑀  defines the number of bits we want to extract
through the quantization. It has to be noted, that 𝓸 consists of optimal values that we may not
be able to exactly approximate using a linear combination based on weights and our given input
values.

In comparison to the 1-bit sign-based quantization, we will not be able to find a linear combination
of only two input values that approximates the optimal points we defined earlier. Therefore, we
will use three or more summands for the linear combination as this give us more flexible control
over the result of the linear combination with the helper data. Later we will be able to show that a
higher number of summands for 𝑧 can provide better approximations for the ideal values of 𝑧 at the
expense of the number of available input values for the quantizer.

We will define 𝑧 from now on as:

𝑧 = ∑
𝑛

𝑖=3
𝑥𝑖 ⋅ ℎ𝑖 (27)

We can now find the optimal linear combination 𝑧opt by finding the minimum of all distances to all
optimal points defined as 𝓸. The matrix that contains the distances of all linear combinations 𝒛 to
all optimal points 𝓸 is defined as: 𝓐 with its entries 𝑎ij = |𝑧𝑖 − 𝑜𝑗|.
𝑧opt can now be defined as the minimal value in 𝓐:

𝑧opt = argmin(𝓐) = argmin
⎝
⎜⎜⎛

⎣
⎢
⎡

𝑎00
⋮

𝑎0j

…
⋱
 

𝑎i0
 
𝑎ij⎦

⎥
⎤

⎠
⎟⎟⎞. (28)

25



Algorithm 2: Find best approximation

1 inputs:
2 𝒚 input values for linear combinations
3 𝓸 list of optimal points
4 output: (𝒉, 𝑧opt)
5 calculate all possible linear combinations 𝒛 with Equation 27
6 calculate matrix 𝓐 with 𝑎ij = |𝑧𝑖 − ℴ𝑗|
7 return weights 𝒉 for 𝑧opt = argmin(𝓐) and 𝑧opt

Algorithm 2 shows a programmatic approach to find the set of weights for the best approximation.
The algorithm returns a tuple consisting of the weight combination 𝒉 and the resulting value of the
linear combination 𝑧opt

3.2.1 Realization of center point approximation

As described earlier, we can define the ideal possible positions for the linear combination 𝑧opt to
be the centers of the quantizer steps. Because the superposition of different linear combinations
of normal distributions corresponds to a Gaussian Mixture Model, wherein finding the ideal set of
points 𝓸 analytically is impossible.

Instead, we will first estimate 𝓸 based on the normal distribution parameters after performing mul-
tiple convolutions with the input distribution 𝑋. The parameters of a multiple convoluted normal
distribution is defined as:

∑
𝑛

𝑖=1
𝒩(𝜇𝑖, 𝜎2

𝑖 ) ∼ 𝒩(∑
𝑛

𝑖=1
𝜇𝑖, ∑

𝑛

𝑖=1
𝜎2

𝑖 ), (29)

while 𝑛 defines the number of convolutions performed [6].

With this definition, we can define the parameters of the probability distribution 𝑍 of the linear
combinations 𝑧 based on the parameters of 𝑋, 𝜇𝑋 and 𝜎𝑋 :

𝑍(𝜇𝑍 , 𝜎2
𝑍) = 𝑍(∑

𝑖=1𝑛

𝜇𝑋, ∑
𝑛

𝑖=1
𝜎2

𝑋) (30)

The parameters 𝜇𝑍  and 𝜎𝑍  allow us to apply an inverse CDF on a multi-bit quantizer 𝒬(2, 𝑥̃) defined
in the tilde-domain. Our initial values for 𝓸first can now be defined as the centers of the steps of
the transformed quantizer function 𝒬(2, 𝑥). These points can be found easily but for the outermost
center points whose quantizer steps have a bound ±∞.
However, we can still find these two remaining center points by artificially defining the outermost
bounds of the quantizer as 1

2𝑀⋅4  and (2𝑀⋅4)−1
2𝑀⋅4  in the tilde-domain and also apply the inverse CDF

to them.

26



−3 −2 −1 0 1 2 3 𝑥

00

01

10

11
𝒬(2, 𝑥)

Artificial quantizer bounds
Figure 23: Quantizer for the distribution resulting a triple convolution with distribution parameters

𝜇𝑋 = 0 and 𝜎𝑋 = 1 with marked center points of the quantizer steps

We can now use an iterative algorithm that alternates between optimizing the quantizing bounds
of 𝒬 and our vector of optimal points 𝓸first.

Algorithm 3: Center Point Approximation

1 input: 𝓸first, 𝒙, 𝑡, 𝑀
2 lists: optimal weights 𝒉opt
3 𝓸 ← 𝓸first
4 repeat t times:
5 perform Algorithm 2 for all input values with 𝓸:
6 update 𝒉opt with returned weights
7 𝒛opt ← all returned linear combinations
8 sort 𝒛opt in ascending order
9 define new quantizer 𝒬∗ using the eCDF based on 𝒛opt

10 update 𝓸 with newly found quantizer step centers
11 return 𝒉opt

We can see both of these alternating parts in Lines 8 and 9 of Algorithm 3. To optimize the quantiz-
ing bounds of 𝒬, we will sort the values of all the resulting linear combinations 𝒛opt in ascending
order. Using the inverse eCDF defined in Equation 4, we can find new quantizer bounds based on 
𝒛opt from the first iteration. These bounds will then be used to define a new set of optimal points 𝓸
used for the next iteration. During every iteration of Algorithm 3, we will store all weights 𝒉 used
to generate the vector for optimal linear combinations 𝒛opt.

27



The output of Algorithm 3 is the vector of optimal weights 𝒉opt. 𝒉opt can now be used to complete
the enrollment phase and quantize the values 𝒛opt.

3.2.2 Maximum quantizing bound distance approximation

Instead of defining the optimal positions for 𝑧 with fixed values, we can also provide a more loose
definition of 𝓸. Let’s consider the following example:

3.3 Experiments

3.4 Results & Discussion

28



Glossary
BER – bit error rate. 18, 19, 20, 21

eCDF – empirical Cumulative Distribution Function. 5, 8, 27

HDA – helper data algorithm. 9, 22

SMHD – S-Metric Helper Data Method. 5, 10, 19, 20, 22, 25

29



Bibliography
[1] R. F. Fischer, “Helper Data Schemes for Coded Modulation and Shaping in Physical Unclonable

Functions,” arXiv preprint arXiv:2402.18980, 2024.

[2] F. M. Dekking, A Modern Introduction to Probability and Statistics: Understanding why and how.
Springer Science & Business Media, 2005.

[3] J.-L. Danger, S. Guilley, and A. Schaub, “Two-metric helper data for highly robust and secure
delay PUFs,” in 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (I-
WASI),  2019, pp. 184–188.

[4] L. Tebelmann, U. Kühne, J.-L. Danger, and M. Pehl, “Analysis and protection of the two-metric
helper data scheme,” in International Workshop on Constructive Side-Channel Analysis and Secure
Design,  2021, pp. 279–302.

[5] R. Hesselbarth, F. Wilde, C. Gu, and N. Hanley, “Large scale RO PUF analysis over slice type,
evaluation time and temperature on 28nm Xilinx FPGAs,” in 2018 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST),  2018, pp. 126–133.

[6] R. V. Hogg, J. W. McKean, A. T. Craig, and others, Introduction to mathematical statistics. Pear-
son Education India, 2013.

30


	Introduction
	Notation
	Tilde-Domain
	



	S-Metric Helper Data Method
	Background
	Two-Metric Helper Data Method
	

	Realization
	Enrollment
	Reconstruction
	Offset properties


	Improvements
	Experiments
	Results & Discussion
	Helper Data Volume Trade-off
	Impact of temperature
	Gray coding
	Usage of an


	Boundary Adaptive Clustering with Helper Data
	Optimizing a 1-bit sign-based quantization
	Derivation of the resulting distribution
	Generating helper-data

	Generalization to higher-order bit quantization
	Realization of center point approximation
	Maximum quantizing bound distance approximation

	Experiments
	Results & Discussion

	Glossary
	Bibliography

