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1 Introduction

These are the introducing words

1.1 Notation

To ensure a consistent notation of functions and ideas, we will now introduce some required con-
ventions

Random distributed variables will be notated with a capital letter, i.e. X, its realization will be the
corresponding lower case letter, .

Vectors will be written in bold test: k represents a vector of quantized symbols.
We will call a quantized symbol k. k consists of all possible binary symbols, i.e. 0,01, 110.

A quantizer will be defined as a function 9(z, a) that returns a quantized symbol k. We also define
the following special quantizers for metric based HDAs: A quantizer used during the enrollment
phase is defined by a calligraphic £. For the reconstruction phase, a quantizer will be defined by a
calligraphic %

Figure 1 shows the curve of a 2-bit quantizer that receives Z as input. In the case, that the value of
Z equals one of the four bounds, the quantized value is chosen randomly from the relevant bins.
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Figure 1: Example quantizer function
For the S-Metric Helper Data Method, we introduce a function
Q(s,m) (1)
where s determines the amount of metrics and m the bit width of the symbols.

1.1.1 Tilde-Domain



AS also described in [1], we will use a CDF to transform the real PUF values into the Tilde-Domain
This transformation can be performed using the function £ = Z. The key property of this transfor-
mation is the resulting uniform distribution of x.

Considering a normal distribution, the CDF is defined as
) =g ()]
=—|1l+er 2
() =g 1rers(Z N (2)
ECDF

The eCDF is constructed through sorting the empirical measurements of a distribution [2]. Although

less accurate, this method allows a more simple and less computationally complex way to transform
real valued measurements into the Tilde-Domain. We will mainly use the eCDF in Section 2 because
of the difficulty of finding an analytical description for the CDF of a Gaussian-Mixture.



2 S-Metric Helper Data Method

A metric based helpder data algorithm (HDA) generates helper data at PUF enrollment to provide
more reliable results at the reconstruction stage. Each of these metrics correspond to a quantizer
with different bounds to lower the risk of bit or symbol errors during reconstruction.

2.1 Background
2.1.1 Distribution Independency

The publications for the Two-Metric approach [3] and [4], as well as the generalized S-Metric ap-
proach [1] make the assumption, that the PUF readout is “zero-mean Gaussian distributed” [1]. We
propose, that a Gaussian distributed input for S-Metric quantization is not required for the operation
of this quantizing algorithm. Instead, any distribution can be used for input values given, that a CDF
exists for that distribution and its parameters are known. As already mentioned in Section 1.1.1,
this transformation will result in uniformly distributed values, where equi-probable areas in the real
domain correspond to equi-distant areas in the Tilde-Domain. Contrary to [3], [4] and [1], which
display relevant areas as equi-probable in a normal distribution, we will use equi-distant areas in
a uniform distribution for better understandability. It has to be mentioned, that instead of trans-
forming all values of the PUF readout into the Tilde-Domain, we could also use an inverse CDF
to transform the bounds of our evenly spaced areas into the real domain with (normal) distributed
values, which can be assessed as remarkably less computationally complex.

2.1.2 Two-Metric Helper Data Method

The most simple form of a metric-based HDA is the Two-Metric Helper Data Method, since the
quantization only yields symbols of 1-bit width and uses the lead amount of metrics possible. Pub-
lications [3] and [4] find all the relevant bounds for the enrollment and reconstruction phases under
the assumption that the PUF readout is Gaussian distributed. Because this approach is static, mean-
ing the parameters for symbol width and number of metrics always stays the same, it is easier to
calculate the bounds for 8 equi-probable areas with a standard deviation of ¢ = 1 first and then
multiplying them with the estimated standard deviation of the PUF readout. This is done by finding
two bounds a and b, that

b 1
/ fx(zdr = 3 (3)

This operation yields 9 bounds defining these areas —1'1, —a, =72, 0, T2, a, T'1 and £o00. During
the enrollment phase, we will use +a as our quantizing bounds, retuning 0 if the absolute value
is smaller than a and 1 otherwise. The corresponding metric is chosen based on the following con-
ditions:



M:{Ml,x<—a\/0<x<a (4)

M2, —a<zVl1i<a<cz

Figure 2 shows the curve of a quantizer O, that would be used during the Two-Metric enrollment
phase. At this point, we will still assume, that our input value z is zero-mean Gaussian distributed.

£(1,2,x)
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-a 0 a z Tl -a -T20T2 a Ti
| Use metric 1 Il Use metric 2| | Metric 1 = Metric 2|

Figure 2: Two-Metric enrollment Figure 3: Two-Metric reconstruction

The metric will be stored publicly for every quantized bit as helper data. As previously described,
each of these metrics correspond to a different quantizer. Now, we can use the generated helper data
in the reconstruction phase and define a reconstructed bit based on the chosen metric as follows:

0,z <T1VT2<z
1,-T1<z<T?2

0,0 <-T2VTl<z

M1: k=
g { 1,-T2<x<T1

M2: k= {
Figure 3 illustrates the basic idea behind the Two-Metric method. Using the helper data, we will
move the bounds of the original quantizer one octile to each side, yielding two new quantizers.
The advantage of this method comes from moving the point of uncertainty away from our readout
position.

Figure 4 and Figure 5 illustrate an example enrollment and reconstruction process. We would con-
sider the marked point the value of the initial measurement and the marked range our margin of
error due to inaccuracies in the measurement process. If we now were to use the quantizer shown
in Figure 4 during both the enrollment and the reconstruction phases, we would risk a bit error,
because the margin of error overlaps with the lower quantization bound —a. But since we generated
helper data during enrollment as depicted in Figure 2, we can make use of a different quantizer
R(1,2,z) whose boundaries do not overlap with the error margin of the measurement.
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Figure 4: Example enrollment Figure 5: Example reconstruction
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2.1.3 S-Metric Helper Data Method

Going on, the Two-Metric Helper Data Method can be generalized as shown in [1]. This generaliza-
tion allows for higher order bit quantization and the use of more than two metrics.

A key difference to the Two-Metric approach is the alignment of quantization areas. Methods de-
scribed in [3] and [4] use two bounds for 1-bit quantization, namely 4a. Contrary, the method
introduced by [1] would look more like a sign based quantizer if the configuration Q(2,1) is used,
using only one quantization bound at = = 0. Figure 6 and Figure 7 illustrate this difference.

(1,2, z) E(1,2,z)
1 fmmmmm s ——— 1gmmmmmmmmmmme
0 t 0
-a 0 a x 0
Figure 6: Two-Metric enrollment Figure 7: S-Metric enrollment with 1-bit configu-

ration
The generalization consists of two components:

« Higher order bit quantization
We can introduce more steps to our quantizer and use them to extract more than one bit out of
our PUF readout.

« Using more than two metrics
Instead of splitting each quantizer into only two equi-probable parts, we can increase the number
of metrics at the cost of generating more helper data.

2.2 Implementation

We will now propose a specific implementation of the S-Metric Helper Data Method.

As shown in Section 2.1.1, we can use a CDF to transform our random distributed variable X into
the Tilde-Domain: X. This allows us to use equi-distant bounds for the quantizer instead of equi-
probable ones.

From now on we will use the following syntax for quantizers that use the S-Metric Helper Data
Method:

Q(s,m, ) (6)

where s defines the number of metrics, m the number of bits and Z a Tilde-Domain transformed
PUF measurement.

11



2.2.1 Enrollment

To enroll our PUF key, we will first need to define the quantizer for higher order bit quantization and
helper data generation. Because our PUF readout Z can be interpreted as a realization of a uniformly
distributed variable X, we can define the width A of our quantizer bins as follows:

A= om (7)
For example, if we were to extract a symbol with the width of 2 bits from our PUF readout, we would
need to evenly space 22 = 4 bins. Using equation Equation 7, the step size for a 2-bit quantizer
would result to:

BT 5

m=2

A/

Figure 8 shows a plot of the resulting quantizer function that would yield symbols with two bits for
one measurement Z.
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Figure 8: 2-bit quantizer

Right now, this quantizer wouldn’t help us generating any helper data. To achieve that, we will need
to divide a symbol step - one, that returns the corresponding quantized symbol - into multiple sub-
steps. More specifically, we will define the amount of metrics we want to use with the parameter s.
Using s, we can define the step size A, as the division of A by s:

A 5 1

5 s S oam . g

After this definition, we need to make an adjustment to our previously defined quantizer function,
because we cannot simply return the quantized value based on a quantizer with step size A,. That
would just increase the amounts of bits we will extract out of one measurement. Instead, we will
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need to return a tuple, consisting of the quantized symbol and the metric ascertained that we will
save as helper data for later.

Going on in our example, we could choose the amount of our metrics to be 2. According to Equa-
tion 9, we would then half our step size:

A 1
51,y 4.2 8

A

This means, we can update our quantizer function with the new step size A, = % and redefining its
output as a tuple consisting of bit value and helper data.

We can visualize the quantizer that we will use during the enrollment phase of a 2-bit 2-metric
configuration as depicted in Figure 9.
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Figure 9: 2-bit 2-metric enrollment Figure 10: 2-bit 3-metric enrollment

To better demonstrate the generalization to s-metrics, Figure 10 shows a 2-bit quantizer that gen-
erates helper data based on three metrics instead of two. In that sense, increasing the number of
metrics will increase the number of sub-steps for each symbol.

We can now perform the enrollment of a full PUF readout. Each measurement will be quantized
with out quantizer &, returning a tuple consisting of the quantized symbol and helper data, as shown
in Equation 11

K; = &(s,md;) = (k, h), (11)

Performing the operation of Equation 11 for our whole set of measurements will yield a vector of
tuples K.
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2.2.2 Reconstruction

We already demonstrated the basic principle of the reconstruction phase in section Section 2.1.2,
more specifically with Figure 4 and Figure 5, which show the advantage of using more than one
quantizer during reconstruction.

We will call our repeated measurement of Z that is subject to a certain error z*. To perform recon-
struction with z*, we will first need to find all s quantizers for which we generated the helper data
in the previous step.

We have to distinguish two different cases for the value of s:
+ sisodd
+ siseven

If s is even, we need to move our quantizer 5 times some distance to the right and 3 times some
distance to the left. We can define the ideal position for the quantizer bounds based on its corre-
sponding metric as centered around the center of the related metric.

We can find these new bounds graphically as depicted in Figure 11. We first determine the x-values
of the centers of a metric (here M1, as shown with the arrows). We can then place the quantizer
steps with step size A (Equation 7) evenly spaced around these points. With these new points for
the vertical steps of Q, we can draw the new quantizer for the first metric in Figure 12.

£(2,2,%) 0(2,2,%)

M2 - : . : . L I e --
1 : : : : : :
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00 ' ' ' '

M1 1 ' i : :

0 3/I16 7/I16 11}16 15}16 T 0 3/16 7/16 11/16 15/16 <
Figure 11: Ideal centers and bounds for the M1 Figure 12: Quantizer for the first metric

quantizer

As for metric 2, we can apply the same strategy and find the points for the vertical steps to be at
1 5 9
16° 167 16
ure 13, forming the complete quantizer for the reconstruction phase of a 2-bit 2-metric configuration

R(2,2, 7).

and %. This quantizer can be visualized together with the first metric quantizer in Fig-
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R(2,2, &) R(3,2, %)
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Figure 13: 2-bit 2-metric reconstruction quantizer Figure 14: 2-bit 3-metric reconstruction quantizer
Analytically, the offset we are applying to £(2, 2, ) can be defined as
1 1
=" = — (12)
2" .52 16
n=2,s=2

This is also shown in Figure 13, as our quantizer curve is moved % to the left and the right.

If a odd number of metrics is given, the offset can still be calculated using Equation 12. Additionally,
we will keep the original quantizer used during enrollment (Figure 14).

Comparing Figure 13, Figure 14 and their respective values of Equation 12, we can observe, that the
offset ¢ gets smaller the more metrics we use.

m | 1] 2 3 4 5 6 7 8 9 110

1 1 1 1 1 1 1 1 1

i 1 P11 Pl
¥ 8 16 24 32 40 48 56 64 72 80

Table 1: Offset values for 2-bit configurations

To find all offsets for values of s > 3, we can use Algorithm 1. For application, we calculate ¢ based
on the metric using Equation 12. The resulting list of offsets is correctly ordered and can be mapped
to the corresponding metrics in ascending order as we will show in Table 2 and Table 3.
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Algorithm 1: Find all offsets

list offsets
if s is odd

3 s=s—1

N =

4 | append 0 to list offsets

while 7 < %

w

6 | append +(i - ¢) to list offsets
7 | append —(i - ¢) to list offsets
8 sort list offsets in ascending order

9 end

Offset properties

Lets look deeper into the properties of the offset value (. As previously stated, we will need to move
the enrollment quantizer  times to the left and $ times to the right. For example, setting parameter
s to 4 means we will need to move the enrollment quantizer %’524 = 2 times to the left and right.
As we can see in Table 2, ¢ for the indices ¢ = +2 are identical to the offsets of a 2-bit 2-metric
configuration. In fact, this property carries on for higher even numbers of metrics.

7 —2 -1 1 2 1 -3 —2 —1 1 2 3
Metric | M1 M2 | M3 | M4 Metric | M1 M2 M3 | M4 | M5 | M6
1 1 1 1 1 1 1 1 1 1
P 16 | 32| 32 16 P 16 | 24| w8 | 4 24 16
Table 2: 2-bit 4-metric offsets Table 3: 2-bit 6-metric offsets

At s = 6 metrics, the biggest offset we encounter is p = 1—16 att = +3.

In conclusion, the maximum offset for a 2-bit configuration ¢ is 1—16 and we will introduce smaller
offsets in between if we use a higher even number of metrics. More formally, we can define the
maximum offset for an even number of metrics as follows:

1
M .g.2  2n.4

N »

(pmax,even -

(13)
Here, we multiply Equation 12 with the maximum offsetting index i,,,, = 3.

Now, if we want to find the maximum offset for a odd number of metrics, we need to modify Equa-
tion 13, more specifically its numerator. We know, that we need to keep the original quantizer for a
odd number of metrics. Besides that, the method stays the same. For that reason, we will decrease
the parameter m by 1, that way we will still perform a division without remainder:

s—1

2
= —= 14.1
$max,odd omn . g.9 ( )
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s—1 1
-2 - (14.2)
2n .54 24
n=2,s=3

It is important to note, that ¢, ,4q, unlike .. ooy, is dependent on the parameter s as we can
see in Table 4.

S 3 5 7 9

1 1 3 1

Pmaxodd | 22 | 20 | 56 | 18

Table 4: 2-bit maximum offsets, odd

The higher m is chosen, the closer we approximate ¢,,,y cven @S shown in Equation 15.1. This means,
while also keeping the original quantizer during the reconstruction phase, the maximum offset for
an odd number of metrics will always be smaller than for an even number.

. s—1
lim Somax,odd = (151)

S—00 2n . g.4
1

= Somax,even
2n -4

(15.2)

2.3 Improvements

The here proposed S-Metric Helper Data Method can be improved by using gray coded labels for
the quantized symbols instead of naive ones [1].

Q(2,1,%)
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Figure 15: Gray Coded 2-bit quantizer

Figure 15 shows a 2-bit quantizer with gray coded labelling. In this example, we have an advantage
at £ = ~0.5, because a quantization error only returns one wrong bit instead of two.
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2.4 Experiments & Results

We tested the implementation of Section 2.2 with the temperature dataset of [5]. The dataset con-
tains counts of positives edges of a toggle flip flop at a set evaluation time D. Based on the count and
the evaluation time, the frequency of a ring oscillator can be calculated using: f = 2 - %. Because we
want to analyze the performance of the S-Metric method over different temperatures, both during
enrollment and reconstruction, we are limited to the second part of the experimental measurements
of [5]. We will have measurements of 50 FPGA boards available with 1600 and 1696 ring oscillators
each. To obtain the values to be processed, we subtract them in pairs, yielding 800 and 848 ring
oscillator frequency differences df.

Since the frequencies f are normal distributed, the difference df can be assumed to be zero-mean
Gaussian distributed. To apply the values dfto our implementation of the S-Metric method, we will
first transform them into the Tilde-Domain using an inverse CDF, resulting in uniform distributed

values o’l\}”

2.4.1 General Interpretation

The bit error rate of different S-Metric configurations for naive labelling can be seen in Figure 16.
For this analysis, enrollment and reconstruction were both performed at room temperature and the

quantizer was naively labelled.

10°

1071

Error Rate

,_\
15}
o

Error Rate

L 104

Figure 16: Bit error rates for same temperature execution
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Glossary

HDA - helpder data algorithm. 9
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