import pandas as pd # List of input CSV file names csv_files = ['./errorrates_5_5_processed.csv', './errorrates_15_15_processed.csv', './errorrates_25_25_processed.csv', './errorrates_35_35_processed.csv', './errorrates_45_45_processed.csv', './errorrates_55_55_processed.csv'] # Read all CSV files into a list of DataFrames dfs = [pd.read_csv(file) for file in csv_files] # Concatenate DataFrames along the columns (axis=1) combined_df = pd.concat(dfs, axis=1) # Calculate the mean for each row, excluding the first column which is assumed to be the index mean_values = combined_df.iloc[:, 1::2].mean(axis=1) # Create the output DataFrame with the original index and the calculated mean output_df = pd.DataFrame({ 'Index': dfs[0].iloc[:, 0], # Assumes the first column is the index 'Mean': mean_values }) # Save the result to a new CSV file output_df.to_csv('errorrates_diff_0.csv', index=False) print("Row-wise mean calculated and saved.")