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1 Introduction

In the field of cryptography, physical unclonable function (PUF) devices are a popular tool for key
generation and storage [1], [2]. In general, a PUF refers to a type of circuit that exhibits slightly
different behaviors during operation due to minor variations in the manufacturing process. Since
the behaviour of one PUF device is now only reproducible on itself and not on a device of the same
type with the same manufacturing process, it can be used for secure key generation and/or storage.

To improve the reliability of the keys generated and stored using the PUF, various helper data
algorithms (HDAs) have been introduced. The general operation of a PUF with a HDA can be di-
vided into two separate stages: enrollment and reconstruction as shown in Figure 1 [3].

| Enrollment E
v k 'K
PUF ; Initial quantization Encoding ;
Helper data Error correction "
. K= K"?
generation helper data
h
S S
v > k* > LK
PUF 2 Repeated quantization Error correction ]
' Reconstruction E

Figure 1: PUF model description using enrollment and reconstruction.

The enrollment stage will usually be performed in near ideal, lab-like conditions i.e. at room temper-
ature (25°C). During this phase, a first PUF readout v with corresponding helper data h is generated.
Going on, reconstruction can now be performed under varying conditions, for example at a higher
temperature. Here, slightly different PUF readout v* is generated. Using the helper data h the new
PUF readout v* can be improved to be less deviated from v as before. One possible implementation
of this principle is called Fuzzy Commitment [4], [5].

Previous works already introduced different HDAs with various strategies [6], [7]. The simplest
form of helper-data one could generate is reliability information for every PUF bit. Here, the HDA
marks unreliable PUF bits that are then either discarded during reconstruction or rather corrected
using an error correction code after the quantization process.

Going on, publications [8] and [9] introduced a metric-based HDA as Two Metric Helper Data
method (TMHD). The main goal of such a HDA is to improve the reliability of the PUF during the
quantization step of the enrollment phase. To achieve that, helper data is generated to define mul-
tiple quantizers for the reconstruction phase to minimize the risk of bit errors. A generalization



outline to extend TMHD for higher order bit quantization has already been proposed by Fischer
in [10].

In the course of this work, we will first take a closer look at SMHD as proposed by Fischer [10] and
provide a concrete realization for this method. We will also propose a method to shape the input
values of a PUF to better fit within the bounds of a multi-bit quantizer which we call Boundary
Adaptive Clustering with Helper data (BACH). We will investigate the question which of these two
HDAs provides the better performance for higher order bit cases with the least amount of helper
data bits.

1.1 Notation

To ensure a consistent notation of functions and ideas, we will now introduce some conventions
and definitions.

Random distributed variables will be notated with a capital letter, i.e. X. Realizations will be the
corresponding lower case letter, z. Values of x subject to some kind of error are marked with a *
in the exponent e.g., z*. Vectors will be written in bold text: e.g., k represents a vector of quantized
symbols. Matrices are denoted with a bold capital letter: M. We will call a quantized symbol k.
k consists of all possible binary symbols, i.e. 0,01,110. A quantizer will be defined as a function
Q(z, a) that returns a quantized symbol k. We also define the following special quantizers for met-
ric based HDAs: A quantizer used during the enrollment phase is defined by a calligraphic &. For
the reconstruction phase, a quantizer will be defined by a calligraphic X Figure 2 shows the curve
of a 2-bit quantizer that receives Z as input. In the case, that the value of Z equals one of the four
bounds, the quantized value is chosen randomly from the relevant bins.

(2,1, %)
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Figure 2: Example quantizer function
For the S-Metric Helper Data Method, we introduce a function
(S8, M), (1)



where S determines the number of metrics and M the bit width of the symbols. The corresponding

metric is defined through the lower case s, the bit symbol through the lower case m. To compare

both SMHD and BACH, we will use a ratio » = W. This ratio gives us an idea how many
elper data bits

helper data bits were used to obtain a quantized symbol. 7 is smaller than 1 if the amount of helper

data bits per quantized symbol is bigger than the symbol bit width itself and bigger than 1 otherwise.

1.1.1 Tilde Domain

The tilde domain describes the range of numbers between 0 and 1, which is defined by the image of
a cumulative distribution function (CDF). As also described in [10], we will use a CDF to transform
the real PUF values into the tilde domain. This transformation can be performed using the function
& = Z. The key property of this transformation is the resulting uniform distribution of z.

Considering a normal distribution, the CDF is defined as

(52) -t}

Empirical cumulative distribution function (eCDF)

We will not always be able to find an analytical description of a probability distribution and its
corresponding CDF. Alternatively, an eCDF can be constructed through sorting the empirical mea-
surements of a distribution [11]. Although less accurate, this method allows a more simple and less
computationally complex way to transform real valued measurements into the tilde domain. We
will mainly use the eCDF in Section 2 because of the difficulty of finding an analytical description

for the CDF of a weighted linear combination of random variables. The function for an eCDF can
be defined as

number of elements in z, s.t <z

€ecpr () = e [0,1], (3)

n
where n defines the number of elements in the vector z. If the vector z were to contain the elements

[1,3,4,5,7,9,10] and x = 5, Equation 3 would result to £ pp(5) = %.

The application of Equation 3 on X will transform its values into the empirical tilde domain.
We can also define an inverse eCDF:
1 ~ ~
€ocpr(Z) =T -1 (4)
The result of Equation 4 is the index 7 of the element 2, from the vector of realizations z.

To apply the eCDF to our numerical results later, we will sort the vector of realizations z of a random
distributed variable Z in ascending order.
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2 S-Metric Helper Data Method

A metric based HDA generates helper data at PUF enrollment to provide more reliable results at
the reconstruction stage. Each of these metrics correspond to a quantizer with different bounds to
lower the risk of bit or symbol errors during reconstruction. For this kind of HDA, the generated
metric is used as helper data and thus does not have to be kept secret.

2.1 Background

Before we turn to a concrete realization of the S-Metric method, let’s take a look at its predecessor,
the Two-Metric Helper Data Method.

2.1.1 Two-Metric Helper Data Method

The simplest form of a metric-based HDA is the Two-Metric Helper Data Method. Its quantization
only yields symbols of 1-bit width and it only uses a single bit of helper data to store the choice of
metric.

Figure 4 and Figure 5 illustrate an example enrollment and reconstruction process. Consider the
marked point the value of the initial measurement and the marked range our margin of error. If
we now were to use the original quantizer shown in Figure 4 during both the enrollment and the
reconstruction phases, we would risk a bit error, because the margin of error overlaps with the lower
quantization bound —a, which we can call a point of uncertainty. To alleviate this we generated
helper data during enrollment as depicted in Figure 6, we can make use of a different quantizer

R(1,2,x) whose boundaries do not overlap with the error margin.

£(1,2,x) R(1,2,z)
1 R e s BEEEEEEEEY I e CEPEEPEPPEEPEES
0 } ' 0 - = .
-a 0 a z -a 0 a z
Figure 4: Example enrollment Figure 5: Example reconstruction

Figure 3: Example enrollment and reconstruction of TMHD. The window function describes the
quantizer used to define the resulting bit. The red dot shows a possible PUF readout measurement
with its blue marked strip as margin of error.

Publications [8] and [9] find all the relevant bounds for the enrollment and reconstruction phases
under the assumption that the PUF readout (our input value x) is zero-mean Gaussian distributed.
Because the parameters for symbol width and number of metrics always stay the same, we can -
without loss of generality — assume the standard deviation as ¢ = 1 and calculate the bounds for 8
equi-probable areas for this distribution. This is done by finding two bounds a and b such, that
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b 1
/ [x(@de = 3 (5)

This operation yields 9 bounds defining these areas —oo, —1'1, —a, —71'2, 0, T2, a, T'1 and +o0.
During the enrollment phase, we will use +a as our quantizing bounds, returning 0 if the absolute
value of x is smaller than a and 1 otherwise. The corresponding metric is chosen based on the fol-
lowing conditions:

M= Mliz<—-aV0<z<a
M2, —a<zVi<a<z '

(6)

Figure 6 shows the curve of a quantizer Q that would be used during the Two-Metric enrollment

phase.
£(1,2,x) R(1,2,x)
11 R e T — R
0 - 0 : . —. :  ——
-a 0 a z T1 -a -T20T2 a Ti z
| Use metric 1 Ml Use metric 2 | Metric 1 —— Metric 2|
Figure 6: Two-Metric enrollment Figure 7: Two-Metric reconstruction

As previously described, each of these metrics correspond to a different quantizer. In the reconstruc-
tion phase, we can use the generated helper data and define a reconstructed bit based on the chosen
metric as follows:

0,0 <-T2VTl<z

0,z<T1IVT2<zx
M1: k= ’
k { 1,-T2<x<T1

M2: k=
,-Tl<z<T2 "’ ’ {

Figure 7 illustrates the basic idea behind the Two-Metric method. Using the helper data, we will
move the bounds of the original quantizer (Figure 4) one octile to each side, yielding two new quan-
tizers. The advantage of this method comes from moving the point of uncertainty away from our
enrollment-time readout.

2.1.2 S-Metric Helper Data method (SMHD)

Going on, the Two-Metric Helper Data Method can be generalized as shown in [10]. This general-
ization allows for higher-order bit quantization and the use of more than two metrics.

A key difference to the Two-Metric approach is the alignment of quantization areas. Methods de-
scribed in [8] and [9] use two bounds for 1-bit quantization, namely 4a. Contrary, the method in-
troduced by Fischer in [10] would look more like a sign-based quantizer if the configuration 9(2,1)
is used, using only one quantization bound at z = 0. Figure 8 and Figure 9 illustrate this difference, .

12



(1,2, x) (1,2, x)

1 —— I
0 t 0
-a 0 a z 0
Figure 8: Two-Metric enrollment Figure 9: S-Metric enrollment with 1-bit configu-

ration
The generalization consists of two components:

- Higher-order bit quantization
We can introduce more steps to our quantizer and use them to extract more than one bit out of
our PUF readout.

« More than two metrics
Instead of splitting each quantizer into only two equi-probable parts, we can increase the number
of metrics at the cost of generating more helper data to increase reliability.

2.2 Realization

We will now propose a specific realization of the S-Metric Helper Data Method.

Instead of using the PUF readout directly for SMHD, we can use a CDF to transform these values
into the tilde domain. The only requirement we would need to meet here is that the CDF of the
probability distribution used is known. This allows us to use equi-distant bounds for the quantizer
instead of equi-probable ones.

From now on we will use the following syntax for quantizers that use the S-Metric Helper Data
Method:

Q(S,M,z), (8)

where S defines the number of metrics, M the number of bits and Z a Tilde-Domain transformed
PUF measurement.

2.2.1 Enrollment

To enroll our PUF key, we will first need to define the quantizer for higher order bit quantization and
helper data generation. Because our transformed PUF readout Z can be interpreted as a realization
of a uniformly distributed variable X, we can define the width A of our quantizer bins as follows:

A= (9)
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For example, if we were to extract a symbol with the width of 2 bits from our PUF readout, we would
need to evenly space 22 = 4 bins. Using equation Equation 9, the step size for a 2-bit quantizer
would result to:

(10)

Figure 10 shows a plot of the resulting quantizer function that would yield symbols with two bits
for one measurement Z.

Q(2,1,%)
11 4-------- e S :
Y S _________ i S
9 S 5 - _________
00 S— ________ _________
0 0.;25 0?5 0.;75 1 T

Figure 10: 2-bit quantizer

Right now, this quantizer wouldn’t help us generating any helper data. To achieve that, we will need
to divide a symbol step — one, that returns the corresponding quantized symbol - into multiple sub-
steps. Using S, we can define the step size Ag as the division of A by S:

A 1

A = —= —
ST 8 T oM. g

(11)

We can now redefine our previously defined quantizer function to not only return the quantized
symbol, but a tuple consisting of the quantized symbol and the metric ascertained that we will save
as helper data for later.

Going on in our example, we could choose the amount of our metrics to be 2. According to Equa-
tion 11, we would then half our step size:

1
Ag=—| =-—== 12
STS|,., 4278 12)

This means, we can update our quantizer function with the new step size Ay = é and redefining
its output as a tuple consisting of bit value and helper data.

We can visualize the quantizer that we will use during the enrollment phase of a 2-bit 2-metric
configuration as depicted in Figure 11.

14
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Figure 11: 2-bit 2-metric enrollment Figure 12: 2-bit 3-metric enrollment

To better demonstrate the generalization to S-metrics, Figure 12 shows a 2-bit quantizer that gen-
erates helper data based on three metrics instead of two. In that sense, increasing the number of
metrics will increase the number of sub-steps for each symbol.

We can now perform the enrollment of a full PUF readout. Each measurement will be quantized
with out quantizer &, returning a tuple consisting of the quantized symbol and helper data.

k; = E(s,m,z;) = (k,h) (13)

i .

Performing the operation of Equation 13 for our whole set of measurements will yield a vector of
tuples k.

2.2.2 Reconstruction

We already demonstrated the basic principle of the reconstruction phase in section Section 2.1.1,
which showed the advantage of using more than one quantizer during reconstruction.

We will call our repeated measurement of Z that is subject to a certain error z*. To perform recon-
struction with z*, we will first need to find all S quantizers for which we generated the helper data
in the previous step and then choose the one corresponding to the saved metric.

We have to distinguish the two cases, that S is either even or odd:

If S is even, we need to define S quantizers offset by multiples of (. We can define the ideal position
for the quantizer bounds based on its corresponding metric as centered around the center of the
metric.

We can find these new bounds graphically as depicted in Figure 13. We first determine the x-values
of the centers of a metric (here M1, as shown with the arrows). We can then place the quantizer
steps with step size A (Equation 9) evenly spaced around these points. If the resulting quantizer
bound is smaller than 0 or bigger than 1, we will either add or subtract 1 from its value so it stays

15



in the defined range of the tilde domain. With these new points for the vertical steps of O, we can
draw the new quantizer for the first metric in Figure 14.

Qm1(2727j)
11 f--mmmmrmmm e --

PT'% AR S SR S -

01 === p—————dee oo

R e

'
'
'
'
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-
'
'
'
'
'
'
s
]
'
'
'
'
'

I

S

0 3/16 7/16 11/16 1516 0 3/16 7/16 11/16 15/16
Figure 13: Ideal centers and bounds for the M1 Figure 14: Quantizer for the first metric
quantizer

As for metric 2, we can apply the same strategy and find the points for the vertical steps to be at
%, %, 1% and %. This quantizer is shown together with the first-metric quantizer in Figure 15, form-

ing the complete quantizer for the reconstruction phase of a 2-bit 2-metric configuration (2, 2, Z).

R(2,2,%) R(3,2,%)
B . HE T i i B . HE T i
S e e m e B B e &
08 N 5 Y P O N
00 - bonee domoees — 00 b bommes dommees -~
2 T R T T R
0 0.25 0.5 0.75 17 0 0.25 0.5 0.75 17
[—— Metric1 —— Metric 2| [— Metric1 —— Metric2 —— Metric 3]
Figure 15: 2-bit 2-metric reconstruction quantizer Figure 16: 2-bit 3-metric reconstruction quantizer
Analytically, the offset we are applying to £(2, 2, Z) can be defined as
1 1
= ——7-— =— . 14
2M . S .2 16 (14)

M=2,5=2
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—g, s g] to obtain the

metric offset ¢, which is used to define each of the S different quantizers for reconstruction. In

® is the constant that we will multiply with a certain metric index ¢ € [

Figure 15, the two metric indices ¢ = 41 will be multiplied with ®, yielding two quantizers, one
moved % to the left and one moved 1—16 to the right.

If a odd number of metrics is given, the offset can still be calculated using Equation 14. Addition-
ally, we will keep the original quantizer used during enrollment as the quantizer for metric 551

(Figure 16).

To find all metric offsets for values of S > 3, we can use Algorithm 1. We can calculate ¢ based on
S and M using Equation 14. The resulting list of offsets is correctly ordered and can be mapped to
the corresponding metrics in ascending order.

Algorithm 1: Find all offsets ¢

1 input &, 5

2 list offsets ¢

3 if S is odd

4 | S=s5—-1

5 | append 0 to list offsets

6 while i < 2

7 | append +(i - @) to list offsets
8 | append —(i - ) to list offsets
9 sort list offsets in ascending order
10 return offsets

11 end

Offset properties

Before we go on and experimentally test this realization of the S-Metric method, let’s look deeper
into the properties of the metric offset value . Comparing Figure 15, Figure 16 and their respective
values of Equation 14, we can observe, that the offset ® gets smaller the more metrics we use.

Table 1: Offset values for 2-bit configurations

1| 2 3 4 5 6 7 8 9 110

o

0|

16 24 32 40 48 56 64 72 80

As previously stated, we will need to define S quantizers, g times to the left and % times to the right.
For example, setting the parameter S to 4 means we will need to move the enrollment quantizer 2
times to the left and right. As we can see in Table 2, ¢ for the maximum metric indices ? = 42 are
identical to the offsets of a 2-bit 2-metric configuration. In fact, this property carries on for higher
even numbers of metrics, as shown in Table 3.

17



Table 2: 2-bit 4-metric offsets Table 3: 2-bit 6-metric offsets

i -2 =111 2 i -3 -2 -11]1 2 3
Metric | M1 M2 | M3 | M4 Metric | M1 M2 M3 | M4 | M5 | Mé6
1 1 1 1 1 1 1 1 1 1
¥ 16| 3| 32| 16 ¥ 6| " | Tw| ® | u | 16

At s = 6 metrics, the biggest metric offset we encounter is ¢ = % att = +3.

This biggest (or maximum) offset is of particular interest to us, as it tells us how far we deviate from
the original quantizer used during enrollment. The maximum offset for a 2-bit configuration ¢ is %
and we only introduce smaller offsets in between if we use a higher even number of metrics.

More formally, we can define the maximum metric offset as follows:

5]

=__t24 15
Pmax oM . g .9 ( )

It is important to note, that ¢, .. is dependent on the parameter S if S is an odd number.

Table 4: 2-bit maximum offsets, odd

S 3 5 7 9

Pmaxodd | 24 | 20 | 56 | 18

The higher S is chosen, the closer we approximate ¢, .. for even choices of S, as shown in
Equation 16.1. This means, while also keeping the original quantizer during the reconstruction
phase, the maximum offset for an odd number of metrics will always be smaller than for an even

number.
2]

E S—1
li — 2 — 16.1
v Pmaxodd = 587 g9 T oM g 4 (16.1)

1

_ - 16.2
oM . 4 Somax,even ( )

Because ¢y, oqq Only approximates @, cven if S — 00 We can assume, that configurations with an
even number of metrics will always perform marginally better than configurations with odd num-
bers of metrics because the bigger maximum offset allows for better reconstructing capabilities.

2.3 Improvements

The S-Metric Helper Data Method proposed by Fischer in [10] can be improved by using Gray-coded
labels for the quantized symbols instead of naive labelling.

18
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Figure 17: Gray Coded 2-bit quantizer

Figure 17 shows a 2-bit quantizer with gray-coded labelling. In this example, we have an advantage
at  ~ 0.5, because a quantization error only returns one wrong bit instead of two.

Furthermore, the transformation into the Tilde-Domain could also be performed using the eCDF to
achieve a more precise uniform distribution because we do not have to estimate a standard deviation
of the input values.

2.4 Experiments

We tested the implementation of Section 2.2 with the dataset of [12]. The dataset contains counts of
positives edges of a ring oscillator at a set evaluation time D. Based on the count and the evaluation
time, the frequency of a ring oscillator can be calculated using: f = 2 - %. Because we want to an-
alyze the performance of the S-Metric method over different temperatures, both during enrollment
and reconstruction, we are limited to the experimental measurements of [12] which varied the tem-
perature during the FPGA operation. We will have measurements of 50 FPGA boards available with
1600 and 1696 ring oscillators each. The two measurement sets are obtained from different slices
of the FPGA board where the only difference to note is the number of ring oscillators available. To
obtain the values to be processed, we subtract them in pairs, yielding 800 and 848 ring oscillator
frequency differences df.

Because we can assume that the frequencies fare i.i.d., the difference df can also be assumed to be
i.i.d. To apply the values df to our implementation of the S-Metric method, we will first transform
them into the Tilde-Domain using an inverse CDF, resulting in uniform distributed values Z. Our
resulting dataset consists of bit error rates (BERs) for quantization symbol widths of up to 6 bits
evaluated with generated helper-data from up to 100 metrics. In the following section, we will often
set the maximum number of metrics to be S = 100. This choice refers to the asymptotic behaviour
of the BER and can be equated with the choice S — oo.
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2.4.1 Results & Discussion

The bit error rate of different S-Metric configurations for naive labelling can be seen in Figure 18.
For this analysis, enrollment and reconstruction were both performed at room temperature.

10°

Bit error rate BER(s,m)
=
o
&
Error Rate

107°

Figure 18: Bit error rates for same-temperature execution. Here we can already observe the asymp-
totic BERs for higher metric numbers. The error rate is scaled logarithmically here.

We can observe two key properties of the S-Metric method in Figure 18. The exponential growth
of the BER can be observed if we set S = 1 and increase M up to 6. Also, as we expanded on in
Section 2.2.2.1, at some point using more metrics will no longer improve the bit error rate of the
key. At a symbol width of M > 6 bits, no further improvement through the S-Metric method can

be observed.

BER(1,2M)
BER(100,2M)

1500 1
1000 1
500 1

e

Figure 19: Asymptotic performance of SMHD
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This tendency can also be shown through Figure 19. Here, we calculatc(ed t}\}}g' quotient of the bit error
ER(1,2

> BER(100,2M)

means, no real improvement is possible anymore through the S-Metric method.

rate using one metric and 100 metrics. From M > 6 onwards approaches ~1, which

Impact of helper data size

The amount of helper data bits required by SMHD is defined as a function of the number of metrics
M
log, (S)

as log,(S). The overall extracted-bits to helper-data-bits ratio can be defined here as » =

Table 5: S-Metric performance with same bit-to-metric ratios

M 1 2 3 4 5 6
S 2 4 8 16 32 64
BER | 0.012 | 0.9-10* | 0.002 | 0.025 | 0.857 | 0.148

If we take a look at the error rates of configurations for which 7 is 800 - 1, we can observe a de-
cline in performance of SMHD for general higher-bit quantization processes. This behaviour is also
shown in Table 5.

Impact of temperature
We will now take a look at the impact on the error rates of changing the temperature both during

the enrollment and the reconstruction phase.

The most common case to look at, is if we consider a fixed temperature during enrollment, most
likely 25°C'. Since we wont always be able to recreate lab-like conditions during the reconstruction
phase, it makes sense to look at the error rates at which reconstruction was performed at different
temperatures.

BER(S, 2?)
107" -

10—2 i

1073 i

10~ -

100
Figure 20: BERs for reconstruction at different temperatures. Generally, the further we move away
from the enrollment temperature, the worse the BER gets.

Figure 20 shows the results of this experiment conducted with a 2-bit configuration.
As we can see, the further we move away from the temperature of enrollment, the higher the BERs.
We can observe this property well in detail in Figure 21.
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Figure 21: BERs for different enrollment and reconstruction temperatures. The lower number in the
operating configuration is assigned to the enrollment phase, the upper one to the reconstruction
phase. The correlation between the BER and the temperature is clearly visible here

Here, we compared the asymptotic performance of SMHD for different temperatures both during
enrollment and reconstruction. First we can observe that the optimum temperature for the operation
of SMHD in both phases for the dataset [12] is 35°C instead of the expected 25°C'. Furthermore, the
BER seems to be almost directly determined by the absolute temperature difference, especially at
higher temperature differences, showing that the further apart the temperatures of the two phases
are, the higher the BER.

Gray coding

In Section 2.3, we discussed how a gray coded labelling for the quantizer could improve the bit error
rates of the S-Metric method.

Because we only change the labelling of the quantizing bins and do not make any changes to SMHD
itself, we can assume that the effects of temperature on the quantization process are directly trans-
lated to the gray-coded case.

Figure 22 shows the comparison of applying SMHD at room temperature for both naive and gray-
coded labels. There we can already observe the improvement of using gray-coded labelling, but the
impact of this change of labels can really be seen in Table 6. As we can see, the improvement rises
rapidly to a peak at a bit width of M=3 and then falls again slightly. This effect can be explained
with the exponential rise of the BER for higher bit widths M. For M > 3 the rise of the BER pre-
dominates the possible improvement by applying a gray-coded labelling.

Table 6: Improvement of using gray-coded instead of naive labelling, per bit width

1 2 3 1 5 6
0% | 24.75% | 47.45% | 46.97% | 45.91% | 37.73%
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Figure 22: Comparison between BERs using naive labelling and gray-coded labelling

Using the dataset, we can estimate the average improvement for using gray-coded labelling to be at

33%.
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3 Boundary Adaptive Clustering with
Helper Data (BACH)

We can explore the option of finding helper data before performing the quantization process. This
approach aims to optimize our input values prior to quantization, which may help minimize the
risk of bit and symbol errors during the reconstruction phase. This differs from methods like SMHD,
which generate helper data to improve the quantization process itself, of those that apply error-
correcting codes afterward.

Since this HDA modifies the input values before the quantization takes place, we will consider the
input values as zero-mean Gaussian distributed and not use a CDF to transform these values into
the tilde-domain.

3.1 Optimizing single-bit sign-based quantization

Before we take a look at the higher order quantization cases, we will start with a very basic method
of quantization: a quantizer, that only returns a symbol with a width of 1 bit and uses the sign of
the input value to determine the resulting bit symbol.

[—— PDF of a normal distribution = O(1,z)]|
(1, z)
1 -+

0-

0 T
Figure 23: 1-bit quantizer with the PDF of a normal distribution

If we overlay the PDF of a zero-mean Gaussian distributed variable X with a sign-based quantizer
function as shown in Figure 23, we can see that the expected value of the Gaussian distribution
overlaps with the decision threshold of the sign-based quantizer. Considering that the margin of
error of the value z is comparable with the one shown in Figure 4, we can conclude that values of
X that reside near 0 are to be considered more unreliable than values that are further away from
the x-value 0. This means that the quantizer used here is very unreliable as is.

Now, to increase the reliability of this quantizer, we can try to move our input values further away
from the value x = 0. To do so, we can define a new input value z as a linear combination of two
realizations of X, z; and z, with a set of weights h; and h, that we will use as helper data:
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Z:h1'$1+h2'x2, (].7)

with h; € {41}. Building only the sum of two input values z; + x4 is not sufficient here, since the
resulting distribution would be a normal distribution with ¢ = 0 as well.

3.1.1 Derivation of the resulting distribution

To find a description for the random distribution Z of z we can interpret this process mathematically
as a maximisation of a sum. This can be realized by replacing the values of z; with their absolute
values as this always gives us the maximum value of the sum:

z = x|+ |7y (18)

Taking into account that z, are realizations of a normal distribution, we can assume without loss of
generality that X is ii.d., defining the overall resulting random distribution Z as:

Z = |X1] + | X, (19)

We will redefine | X| as a half-normal distribution Y whose PDF is

_ V2 y?
fy(y,g) N aﬁeXp 252
o=1

_ \/g exp ({é) (20.2)

Z =Y +Y,. 21
1 2

Ly >0 (20.1)

Now, Z simplifies to

We can assume for now that the realizations of Y are independent of each other. The PDF of the ad-
dition of these two distributions can be described through the convolution of their respective PDFs:

Fom = / ) (2 — y)dy (22.1)

- [\/g exp (_%> Ve (_@Nc@ (222)

_2 v+ (z—y)’
= ;/0 exp (— 5 )dy (22.3)

Evaluating the integral of Equation 22.3, we can now describe the resulting distribution of this max-
imisation process analytically:

fz = % exp (—%) erf(g)z > 0. (23)
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Our derivation of f, currently only accounts for the addition of positive values of z,, but two neg-
ative x,; values would also return the maximal distance to the coordinate origin. The derivation for
the corresponding PDF is identical, except that the half-normal distribution Equation 20 is mirrored
around the y-axis. Because the resulting PDF f,* is a mirrored variant of f, and f, is arranged
symmetrically around the origin, we can define a new PDF f7, as

f7(2) = [f2(2)]; (24)

on the entire z-axis. f}(z) now describes the final random distribution after the application of our
optimization of the input values z,.

9(1, 2), [ f2(2)]
1 -

0 2
[—— Optimized PDF == Quantizer |

Figure 24: Optimized input values z overlaid with sign-based quantizer Q

Figure 24 shows two key properties of this optimization:

1. Adjusting the input values using the method described above does not require any adjustment
of the decision threshold of the sign-based quantizer.

2. The resulting PDF is zero at z = 0 leaving no input value for the sign-based quantizer at its de-
cision threshold.

3.1.2 Generating helper-data

To find the optimal set of helper-data that will result in the distribution shown in Figure 24, we
can define the vector of all possible linear combinations z as the vector-matrix multiplication of the
input values z; and the matrix H of all weight combinations with h; € [+1]:

z=xz - H (25)

We will choose the optimal weights based on the highest absolute value of z, as that value will be the
furthest away from 0. To not encounter two entries in z that both have the same highest absolute
value, we can set the first helper data bit to be always h; = 1.

Considering our single-bit quantization case, Equation 25 can be written as:

1\ [+1 =1 +1 -1
= . 26
® (wz) [+1 +1 -1 -1 (26)

The vector of optimal weights h,,,; can now be found through argmax,, (z). If we take a look at the
dimensionality of the matrix of all weight combinations, we notice that we will need to store only
1 helper-data bit per quantized symbol because h; is set to 1. In fact, we will show later, that the
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amount of helper-data bits used by this HDA is directly linked to the number of input values used
instead of the number of bits we want to extract during quantization.

3.2 Generalization to higher-order bit quantization

We can generalize the idea of Section 3.1 and apply it for a higher-order bit quantization. Contrary
to SMHD, we will always use the same step function as quantizer and optimize the input values x
to be the furthest away from any decision threshold. In this higher-order case, this means that we
want to optimise our input values as far away as possible from the nearest decision threshold of the
quantizer instead of just maximising the absolute value of the linear combination.

For a complete generalization of this method, we will also parametrize the amount of addends N
kin the linear combination of z. That means we can define z from now on as:

N
=1

We can define the condition to test whereas a tested linear combination is optimal as follows:

The optimal linear combination 2, is found, when the distance to the nearest quantizer decision
bound is maximised. Finding the weights h,; of the optimal linear combination z,,; can be formal-
ized as:

h,, = argmax, min;|h"x —b;| s.t. h; € {£1} (28)

Example with 2-bit quantizer

We can define the bounds of the two bit quantizer b as [—a;, 0, a] omitting the bounds +occ. The
values of b are already placed in the real domain to directly quantize normal distributed input val-
ues. A simple way to solve Equation 28 is to use a brute force method and calculate all distances to
every quantization bound b;, because the number of possible combinations is finite. Furthermore,
fining a solution for Equation 28 analytically poses to be significantly more complex.

The linear combination z for the amount of addends ¢ = 2 is defined as
According to Equation 25, all possible linear combinations for two input values z; and z, of Equa-
tion 29 can be collected as the vector z of length 2¢ |,_, = 4:

z = (Zl,Z2,23,Z4) (30)

Calculating the absolute distances to every quantizer bound b, for all linear combinations z; gives
us the following distance matrix:

a11 Q21 A31 Q41
A=|012 Q22 Q37 Qg2 |, (31)

Q13 Qg3 Q31 Q43
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where a; ; = ‘z j‘.

J 1
Now we want to find the bound b, for every z, to which it is closest. This can be achieved by deter-
mining the minimum value for each column of the matrix A. The resulting vector v now consists
of the distance to the nearest quantizer bound for every linear combination with entries defined as:

v, = min{aLj | 1< j <4} foreachi=1,2,3. (32)

The optimal linear combination z,,; can now be found as the entry z; of z where its corresponding

distance v is maximised.

3.2.2 Simulation of the bound distance maximisation strategy

Two important points were anticipated in the preceding example:

1. We cannot define the resulting random distribution Z after performing this operation analyti-
cally and thus also not the quantizer bounds b. A way to account for that is to guess the resulting
random distribution and b initially and repeating the optimization using quantizer bounds found
through the eCDF of the resulting linear combination values.

2. If the optimization described above is repeated multiple times using an eCDF, the resulting ran-
dom distribution Z must converge to a stable random distribution. Otherwise we will not be able
to carry out a reliable quantization in which the symbols are uniformly distributed.

To check that the strategy for optimizing the linear combination provided in the example above
results in a converging random distribution, we will perform a simulation of the optimization as
described in the example using 100 000 simulated normal distributed values as realizations of the
standard normal distribution with the parameters 4 = 0 and o = 1.

Figure 25 shows various histograms of the vector z,,; after different iterations. Even though the
overall shape of the distribution comes close to our goal of moving the input values away from the
quantizer bounds b, the distribution itself does not converge to one specific, final shape. It seems
that the resulting distributions for each iteration oscillate in some way, since the distributions for
iterations 7 and 25 have the same shape. However the distribution seems to be chaotic and thus
does not seem suitable for further quantization.
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Iteration 1 Iteration 7

Iteration 18 Iteration 25
Figure 25: Probability distributions for various iterations

3.2.3 Center Point Approximation

For that reason, we will now propose a different strategy to find the weights for the optimal linear
combination z,. Instead of defining the desired outcome of z,, as the greatest distance to the
nearest quantizer decision threshold, we will define a vector ¢ = [¢4, ¢5..., ¢on] containing the
optimal values that we want to approximate with z. Considering a M-bit quantizer with 2 steps,
we can define the values of ¢ as the center points of these quantizer steps. Its cardinality is 2. It
has to be noted, that -@ consists of optimal values that we may not be able to exactly approximate
using a linear combination based on weights and our given input values.

We can find the optimal linear combination z_, by finding the minimum of all distances to all op-

opt
timal points defined in -@. The matrix that contains the distances of all linear combinations z to all
optimal points -¢ is defined as: A with its entries a;; = |2 — oj‘.

Zopt can now be defined as the minimal value in .A:

2o = min(A) = min P . (33)

op
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Algorithm 2: OptimalWeights to approximate ¢

1 inputs:

2 | y input values for linear combinations

w

¢ list of optimal points
output: (h zZ )

» “opt

(2 BN

calculate all possible linear combinations z with Equation 27

[=)}

calculate matrix A with a;; = |2 — 0j]

7 return weights h for 2, = argmin(.A) and z,;

Algorithm 2 shows a programmatic approach to find the set of weights for the best approximation.
The algorithm returns a tuple consisting of the weight combination h and the resulting value of the

linear combination z.

Because the superposition of different linear combinations of normal distributions corresponds to
a Gaussian Mixture Model, finding the ideal set of points - analytically is impossible.

Instead, we will first estimate -¢ based on the normal distribution parameters after performing mul-
tiple convolutions with the input distribution X. The parameters of a multiple convoluted normal
distribution is defined as:

=1 i=1 i=1

while n defines the number of convolutions performed [13].

With this definition, we can define the parameters of the probability distribution Z of the linear
combinations z based on the parameters of X, px and ox:

Z(#Z70’2Z):Z(ZMX7§:J§{) (35)

1=1" =1

The parameters i, and o ,, allow us to apply an inverse CDF on a multi-bit quantizer 9(2, Z) defined
in the tilde-domain. Our initial values for @, can now be defined as the centers of the steps of
the transformed quantizer function Q(2, x). These points can be found easily but for the outermost
center points whose quantizer steps have a bound +oc.

However, we can still find these two remaining center points by artificially defining the outermost
bounds of the quantizer as 2;}1\4 and % in the tilde-domain and also apply the inverse CDF
to them.
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Figure 26: Quantizer for the distribution resulting a triple convolution with distribution parameters
tx = 0 and oy = 1 with marked center points of the quantizer steps

We can now use an iterative algorithm that alternates between optimizing the quantizing bounds
of Q and our vector of optimal points ¢ ,.

Algorithm 3: Center Point Approximation

1 input: ¢4, x,t, M

2 lists: optimal weights h;

30 & Oy

4 repeatt times:

5 | perform OpTIMALWEIGHTS(0, x):

6 update h__, with returned weights

opt
7 Zopt ¢ all returned linear combinations

8 | define new quantizer 9" using the eCDF based on z:

9 sort z,,; in ascending order
10 Q* < use Equation 4 with quantizer bounds in the tilde domain

11 | update ¢ with newly found quantizer step centers

12 return h

We can see both of these alternating parts in Lines 6 and 11 of Algorithm 3. To optimize the quan-

tizing bounds of ©, we will sort the values of all the resulting linear combinations 2z, in ascending

op
order. Using the inverse eCDF defined in Equation 4, we can find new quantizer bounds based on
Zopt from the first iteration. These bounds will then be used to define a new set of optimal points &
used for the next iteration. During every iteration of Algorithm 3, we will store all weights h used

to generate the vector for optimal linear combinations 2.
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We can also use a simulation here to check the convergence of the distribution Z using the same
input values and quantizer configurations as in Section 3.2.2.

Iteration 1 Iteration 25
Figure 27: Probability distributions for the first and 25th iteration of the center point approximation
method

Comparing the distributions in Figure 27, we can see that besides a closer arrangement the overall
shape of the probability distribution Z converges to a stable distribution representing the original
estimated distribution Z through Equation 35 through smaller normal distributions.

The output of Algorithm 3 is the vector of optimal weights h, ;. h,,; can now be used to complete
the enrollment phase and quantize the values 2.

To perform reconstruction, we can calculate the same linear combination used during enrollment
with the generated helper-data and the new PUF readout measurements. We can lower the compu-
tational complexity of this approach by using the assumption that X are i.i.d.. The end result of ¢
can be calculated once for a specific device series and saved in the ROM of. During enrollment, only

the vector h,, has to be calculated.

3.2.4 Impact of helper-data volume and amount of addends

The amount of helper data is directly linked to the symbol bit width M and the amount of addends
N used in the linear combination. Because we can set the first helper data bit A; of a linear combi-
nation to 1 to omit the random choice, the resulting extracted bit to helper data bit ratio » can be

defined as » = whose equation is similar tot he one we used in the SMHD analysis.

M
N-1’

3.3 Experiments

To test our implementation of BACH using the prior introduced center point approximation we
conducted a similar experiment as in Section 2.4. However, we have omitted the analysis over dif-
ferent temperatures for the enrollment and reconstruction phase here, as the behaviour of BACH
corresponds to that of SMHD in this matter. As in the S-Metric analysis, the resulting dataset con-
sists of the bit error rates of various configurations with quantization symbol widths of up to 4 bits
evaluated with up to 10 addends for the linear combinations.
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3.4 Results & Discussion

We can now compare the BERs of different BACH configurations.
Table 7: BERs of different BACH configurations

Table 7 shows the BERs of BACH configurations with N addends and extracting M bits out of one
input value z. The first interesting property we can observe, is the caveat BACH produces for the
first three bit combinations M = 1,2 and 3 at around N = 3 and IV = 4. At these points, the BER
experiences a drop followed by a steady rise again for higher numbers of N. If M is generally cho-
sen higher, BACH seems to return unstable results, halving the BER as IV reaches 9 for M = 5 but
showing no real improvement for various addends if M = 6.

We can also compare the performance of BACH using the center point approximation approach
with the BERs of higher order bit quantizations that don’t use any helper data.

Table 8: BERs for higher order bit quantization without helper data

M 1 2 3 4 5 6
BER | 0.013]0.02 [ 0.04]0.07 [ 0.11]0.16

Unfortunately, the comparison of BERs of Tables 8 and 7 shows that our current realization of BACH
does either ties the BER in Table 8 or is worse. Let’s find out why this happens.

Justification of the original idea

If we take a step back and look at the performance of the optimized single-bit sign-based quantiza-
tion process of Section 3.1, we can compare the following BERs:

Table 9: Comparison of BERs for the single-bit quantization process with and without helper data

No helper data 0.013
With helper data using greatest distance 0.00052

With helper data using center point approximation | 0.01

As we can see in Table 9, generating the helper data based on the original idea where Equation 28 is
used improves the BER of the single-bit quantization by approx. 96%. The probability distributions
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Z of the two different realizations of BACH - namely the distance maximization strategy and the
center point approximation — give an indication of this discrepancy:

Center point approximation Distance maximization
Figure 30: Comparison of the histograms of the different strategies to obtain the optimal weights
for the single-bit case

Figure 30 shows the two different probability distributions. We can observe that using a vector of
optimal points -¢ results in a more narrow distribution for Z than just maximizing the linear com-
bination to be as far away from x = 0 as possible. This difference in the shape of both distributions
seem to be the main contributor to the fact that the optimization using center point approximation
yields no improvement for the quantization process. Unfortunately, we were not able define an al-
gorithm translating this idea to a higher order bit quantization for which the resulting probability
distribution Z converges.

Taking a look at the unstable probability distributions issued by the bound distance maximization
strategy in Figure 25, we can get an idea of what kind of distribution a BACH algorithm should
achieve. While the inner parts of the distributions do not overlap with each other like in the stable
iterations shown in Figure 27, the outermost values of these distributions resemble the shape of
what we achieved using the distance maximization for a single-bit optimization. These two proper-
ties could - if the distribution converges — result in far better BERs for higher order bit quantization,
as the comparison in Table 9 indicates.

35



36



4 Conclusion and Outlook

During the course of this work, we took a closer look at an already introduced HDA, SMHD and
provided a concrete realization. Our experiments showed that after a certain point, using more met-
rics S won’t improve the BER any further as they behave asymptotically for S — co. Furthermore,
we concluded that for higher choices of the symbol width M, SMHD will not be able to improve
on the BER, as the initial error is too high. An interesting addition to our analysis provided the im-
provement of Gray-coded labelling for the quantizer as this resulted in an improvement of =~ 30%.

Going on, we introduced the idea of a new HDA which we called Boundary Adaptive Clustering
with Helper data BACH. Here we aimed to utilize the idea of moving our initial PUF measurement
values away from the quantizer bound to reduce the BER using weighted linear combinations of our
input values. Although this method posed promising results for a sign-based quantization yielding
an improvement of &~ 96% in our testing, finding a good approach to generalize this concept turned
out to be difficult. The first issue was the lack of an analytical description of the probability distrib-
ution resulting from the linear combinations. We accounted for that by using an algorithm that al-
ternates between defining the quantizing bounds using an eCDF and optimizing the weights for the
linear combinations based on the found bounds. The loose definition of Equation 28 to find an ideal
linear combination which maximizes the distance to its nearest quantization bound did not result
in a stable probability distribution over various iterations. Thus, we proposed a different approach
to approximate the linear combination to the centers between the quantizing bounds. This method
resulted in a stable probability distribution, but did not provide any meaningful improvements to
the BER in comparison to not using any helper data at all.

Future investigations of the BACH idea might find a solution to the convergence of the bound dis-
tance maximization strategy. Since the vector of bounds b is updated every iteration of BACH, a
limit to the deviation from the previous position of a bound might be set. Furthermore, a recursive
approach to reach higher order bit quantization inputs might also result in a converging distribu-
tion. If we do not want to give up the approach using a vector of optimal points ¢ as in the center
point approximation, a way may be found to increase the distance between all optimal points ¢ to
achieve a better separation for the results of the linear combinations in every quantizer bin.

If a converging realization of BACH is found, using fractional weights instead of +1 could provide
more flexibility for the outcome of the linear combinations.

Ultimately, we can build on this in the future and provide a complete key storage system using
BACH or SMHD to improve the quantization process.

But in the end, the real quantizers were the friends we made along the way.
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Glossary

BACH - Boundary Adaptive Clustering with Helper data. 8, 9, 33, 34, 35, 37
BER - bit error rate. 19, 20, 21, 22, 23, 34, 37

CDF - cumulative distribution function. 9, 13

eCDF - empirical Cumulative Distribution Function. 5, 9, 29, 32, 37

HDA - helper data algorithm. 7, 8, 11, 25, 37

PUF - physical unclonable function. 7, 8, 11, 13, 37

SMHD - S-Metric Helper Data method. 5, 8, 9, 12, 13, 20, 21, 22, 25, 28, 33, 37

TMHD - Two Metric Helper Data method. 7, 8, 11
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